Chapter 8 Introduction to Trigonometry and its Equation NCERT Exemplar Solutions Exercise 8.3 Class 10 Maths
Chapter Name | NCERT Maths Exemplar Solutions for Chapter 8 Introduction to Trigonometry and its Equation Exercise 8.3 |
Book Name | NCERT Exemplar for Class 10 Maths |
Other Exercises |
|
Related Study | NCERT Solutions for Class 10 Maths |
Exercise 8.3 Solutions
Short Answer Questions
Prove the following (from Q.1 to Q.7):
1. Sinθ/(1 + cosθ) + (1 + cosθ)/sinθ = 2cosecθ
Solution
L.H.S =
Hence proved.
2. tanA/(1 + secA) - tanA/(1 - secA) = 2cosecA
Solution
L.H.S
As,
sec2A – tan2A = 1
⇒ sec2A – 1 = tan2A
= R.H.S
Hence proved.
3. If tan A = 3/4, then sin A cos A = 12/25
Solution
As given in the question,
tan A = 3/4
Also,
tan A = Perpendicular/Base
So,
tan A = 3k/4k
Where,
Perpendicular = 3k
Base = 4k
Using Pythagoras Theorem,
(hypotenuse)2 = (perpendicular)2 + (base)2
⇒ (hypotenuse)2 = (3k)2 + (4k)2
= 9k2 + 16k2
= 25k2
hypotenuse = 5k
Now find sin A and cos A,
sin A = 3k/5k
= 3/5
cos A = 4k/5k
= 4/5
So,
sin A cos A = 3/5 × 4/5
= 12/25
Hence, proved.
4. (sinα + cosα)(tanα + cotα) = secα + cosecα
Solution
L.H.S:
(sinα + cosα)
So,
(sinα + cosα)(tanα + cotα)
secα + cosecα
= R.H.S
Hence, proved.
5. (√3 + 1)(3 - cot30°) = tan3 60° - 2sin60°
Solution
(√3 + 1)(3 - cot30°)
= (√3 + 1)(3 - √3)
[as, cot 30° = √3]
= (√3 + 1) √3(√3 - 1)
[ as, (3 - √3) = √3(√3 - 1)]
= [(√3)2 - 1]√3
[as, (√3 + 1)(√3 - 1) = [(√3)2 - 1]
= (3 - 1)√3
= 2√3
Also, solving
R.H.S :
tan3 60° - 2sin 60°
As,
tan 60° = √3 and
sin 60° = √3/2,
we get,
(√3)3 - 2(√3/2) = 3√3 - √3 = 2√3
So,
L.H.S = R.H.S
Hence, proved.
6. 1 + cot2 α/(1 + cosec α) = cosec α
Solution
Taking LHS,
tan θ + tan (90 - θ) = tan θ + cot(θ)
= sec θ cosec θ
= sec θ sec(90 - θ)
Hence proved.
tan θ = 1/√3
= tan 30°
θ = 30°
So, the angle of elevation of the Sun is 30°.
Given,
√3 tan θ = 1,
⇒ tanθ = 1/√3
⇒ tanθ = tan 30°
θ = tan 30°
So,
sin2 θ - cos2 θ = sin2 30° - cos2 30°
= (1/2)2 - (√3/2)2
= -1/2
cos60° = PR/PQ
1/2 = h/15
h = 15/2 m
= (1 + tan2 θ)(1 - sin2 θ) [as, (a - b)(a + b) = a2 - b2]
= sec2 θ.cos2 θ [as, 1 + tan2 θ= sec2 θ and cos2 θ + sin2 θ = 1]
= 1 [as, sec θ = 1/cosθ]
2 sin2 θ - (1 - sin2 θ) = 2 [as, sin2 θ + cos2 θ = 1]
⇒ 2sin2 θ - sin2 θ - 1 = 2
⇒ 3sin2 θ = 3
⇒ sin2 θ = 1
⇒ sinθ = 1 = sin90° [as, sin 90° = 1]
⇒ θ = 90°
Given that,
= tan2 θ(tan2 θ + 1)
= tan2 θ.sec2 θ [as, sec2 θ = tan2 θ + 1]
= (sec2 θ - 1).sec2 θ [as, tan2 θ = sec2 θ - 1]
= sec4 θ - sec2 θ