Chapter 5 Factorisation of Algebraic Expressions RD Sharma Solutions Exercise 5.1 Class 9 Maths

Chapter 5 Factorisation of Algebraic Expressions RD Sharma Solutions Exercise 5.1 Class 9 Maths

Chapter Name

RD Sharma Chapter 5 Factorisation of Algebraic Expressions Exercise 5.1

Book Name

RD Sharma Mathematics for Class 10

Other Exercises

  • Exercise 5.2
  • Exercise 5.3
  • Exercise 5.4

Related Study

NCERT Solutions for Class 10 Maths

Exercise 5.1 Solutions

Factorize : 

1. x3 + x – 3x2 - 3

Solution

x3 + x – 3x2 - 3
Taking x common in (x3 + x)
= x(x2 + 1) - 3x2 - 3 
Taking -3 common in (-3x2 - 3)
= x(x2 +1) - 3(x2 + 1)
Now, we take (x2 + 1) common 
= (x2 + 1)(x - 3)
∴ x3 + x - 3x2 - 3 = (x2 + 1)(x - 3)


2. a(a + b)3 - 3a2 b(a +b)

Solution

Taking (a + b) common in two terms 
= (a + b){a(a + b)2 - 3a2b}
Now, using (a + b)2 = a2 + b2 + 2ab


3. x(x3 - y3 ) + 3xy(x - y) 

Solution

4. a2x2 + (ax2 + 1)x + a
Solution
We multiply x(ax2 + 1) = ax3 + x

5. x2 + y - xy - x
Solution
On rearranging 
x2 + y - xy - x 
Taking x common in the (x2 + y) and -1 in (-x + y) 
= x( x - y)-1(x - y) 
Taking (x - y) common in both the terms 
= (x - y)(x - 1) 
∴ x2 + y - xy - x = (x- y)(x - 1)

6. x3 - 2x2y + 3xy2 - 6y3 
Solution

7. 6ab - b2 + 12ac - 2bc
Solution
Taking common b in (6ab - b2 ) and 2c in (12ac - 2bc)
= b(6a - b) + 2c(6a - b)
Taking (6a - b) common in both terms 
= (6a - b)(b + 2c) 
∴ 6ab - b2 + 12ac - 2bc = (6a - b)(b + 2c)

8. [x2 + 1/x2 ] - 4[x + 1/x] + 6
Solution

9. x(x - 2)(x - 4) + 4x - 8
Solution
= x(x - 2)(x - 4) + 4(x - 2)
Taking (x - 2)common in both terms 
= (x - 2){x(x - 4)+ 4}
= (x - 2){x2 - 4x + 4}
Now splitting middle term of x2 - 4x + 4 

10. (x + 2)(x2 + 25) - 10x2 - 20x 
Solution

11. 2a2 + 2√6ab + 3b2 
Solution

12. (a - b + c)2 + (b - c + a)2 + 2(a - b + c)(b - c + a)
Solution
Let (a - b + c) = x and (b - c + a) = y 

13. a2 + b2 2(ab + bc + ca)
Solution

14. 4(x - y)2 - 12(x - y)(x + y) + 9(x + y)2 
Solution
Let (x - y) = a, (x + y) = b 
= 4a2 - 12ab + 9b2 
Splitting middle term -12 = -6 - 6 
also 4× 9 = -6 × - 6

15. a2 - b2 + 2bc - c2 
Solution

16. a2 + 2ab + b2 - c2
Solution
Using identity a2 + 2ab + b2 = (a + b)2 
= (a + b)2 - c2 
Using identity a2 - b2 =(a +b)(a - b) 
= (a + b + c)(a + b - c)
∴ a2 + 2ab + b2 - c2 = (a + b + c)(a + b -c)

17. a2 + 4b2 - 4ab - 4ac2
Solution
On rearranging 
= a2 - 4ab + 4b2 - 4c2 
= (a)2 - 2× a × 2b + (2b)2 - 4c2 
Using identity a2 - 2ab + b2 = (a - b)2 
= (a - 2b)2 - 4c2 
= (a - 2b)2 - 2c2 
Using identity a2 - b2 = (a + b)(a -b) 
= (a - 2b + 2c)(a - 2b - 2c)
∴ a2 + 4b2 - 4ab - 4c2  = (a - 2b +2c)(a - 2b - 2c)

18. xy9 - yx9 
Solution
xy9 - yx9 

19. x4 + x2y2 + y4 
Solution
Adding x2 y2 and subtracting x2y2  to the given equation 

20. x2 - y2 - 4xz + 4z2 
Solution
On rearranging the terms 

21. x2 + 6√2 x + 10 
Solution
Splitting middle term, 

22. x2 - 2√2x - 30
Solution
Splitting the middle term, 

23. x2  - √3x - 6 
Solution
Splitting the middle term, 

24. x2  + 5√5x + 30 
Solution
Splitting the middle term, 

25. x2  + 2√3x - 24
Solution
Splitting the middle term, 

26. 2x2  - 5/6 x + 1/12
Solution
Splitting the middle term, 

27. x2  + 12/35 x + 1/35
Solution
Splitting the middle term, 

28. 21x2  - 2x + 1/21
Solution

29. 5√5x2  + 20x + 3√5
Solution
Splitting the middle term, 

30. 2x2 + 3√5x + 5 
Solution
Splitting the middle term, 

31. 9(2a - b)2  - 4(2a - b) - 13 
Solution
Let 2a - b = x 
9x2  - 4x - 13 
Splitting the middle term, 

32. 7(x - 2y)2 - 25(x - 2y) + 12
Solution
Let x - 2y = P
= 7P2 - 25P + 12 
Splitting the middle term, 
= 7P2 - 21P - 4P + 12 
= 7P (P - 3) -4(P - 3)
= (P - 3)(7P - 4) 
Substituting P = x - 2y 
= (x - 2y - 3){7(x - 2y) - 4)
= (x - 2y - 3)(7x - 14y - 4)
∴ 7(x - 2y)2 - 25(x - 2y) + 12 = (x - 2y - 3)(7x - 14y - 4) 

33. 2(x + y)2 - 9(x + y) - 5 
Solution
Let x + y = z 
= 2z2  - 9z - 5
Splitting the middle term, 

34. Given possible expressions for the length and breadth of the rectangle having 35y2 + 13y - 12 as its area.
Solution
Area = 35y2  + 13y - 12 
Splitting the middle term, 
Area = 35y2 + 28y - 15y - 12 
= 7y(5y + 4) - 3(5y + 4) 
Area = (5y + 4)(7y - 3)
Also area of rectangle  = Length × Breadth 
∴  Possible length = (5y + 4) and breadth = (7y - 3) 
Or Possible length = (7y - 3) and breadth = (5y + 4) 

35. What are the possible expressions for the dimensions of the cuboid whose volume is 3x2 - 12x. 
Solution
Here volume = 3x2  - 12x 
= 3x(x - 4)
= 3× x(x-4)
Also volume = Length × Breadth × Height 
∴ Possible expressions for dimensions of the cuboid are = 3, x, (x - 4) 
Previous Post Next Post