Chapter 14 Quadrilaterals RD Sharma Solutions Exercise 14.3 Class 9 Maths

Chapter 14 Quadrilaterals RD Sharma Solutions Exercise 14.3 Class 9 Maths

Chapter Name

RD Sharma Chapter 14 Quadrilaterals Exercise 14.3

Book Name

RD Sharma Mathematics for Class 10

Other Exercises

  • Exercise 14.1
  • Exercise 14.2
  • Exercise 14.4

Related Study

NCERT Solutions for Class 10 Maths

Exercise 14.3 Solutions

1. In a parallelogram ABCD, determine the sum of angles ∠C and ∠D. 

Solution


∠C and ∠D are consecutive interior angles on the same side of the transversal 
∴ ∠C + ∠D = 180°

2. In a parallelogram ABCD , if ∠B = 135°, determine the measures of its other angles. 

Solution

Given ∠B = 135°
ABCD is a parallelogram
∴ ∠A = ∠C, ∠B = ∠D and ∠A + ∠B = 180°
∠A + ∠B = 180°
∠A = 45°
⇒ ∠A = ∠C = 45° and ∠B = ∠C = 135° 


3. ABCD is a square. AC and BD intersect at O. State the measure of ∠AOB. 

Solution

Since, diagonals of square bisect each other at right angle 
∴ ∠ADB = 90°


4. ABCD is a rectangle with ∠ABD = 40. Determine ∠DBC. 

Solution

We have, 
∠ABC = 90°
⇒ ∠ABD + ∠DBC = 90°  [∵∠ABD = 40°]
⇒ 40 + ∠DBC = 90 
∴∠DBC = 50 

5. The sides AB and CD of a parallelogram ABCD are bisected at E and F. Prove that EBFD is a parallelogram.
Solution
Since ABCD is a parallelogram 
∴ AB || DC and AB = DC 
⇒ EB || DF and 1/2 AB = 1/2 DC 
⇒ EB || DF  and EB = DF 
EBFD is a parallelogram 

6. P and Q are the points of trisection of the diagonal BD of a parallelogram ABCD. Prove that CQ is parallel to AP. Prove also that AC bisects PQ.
Solution
We know that, diagonals of a parallelogram bisect each other 
∴ OA = OC and OB = OD 
Since P and Q are point of intersection of BD 
∴ BP = PQ = QD 
Now, OB  = OD and BP = QD 
⇒ OB - BP  = OD - QD
⇒ OP = OQ 
Thus in quadrilateral APCQ, we have 
OA = OC and OP  = OQ 
⇒ diagonals of quadrilateral APCQ bisect each other 
∴ APCQ  is a parallelogram 
Hence AP || CQ 

7. ABCD is a square E, F, G and H are points on AB, BC, CD and DA respectively, such that AE = BF = CG = DH. Prove that EFGH is a square.
Solution
We have,
AE = BF = CG = DH = x(say)
∴ BE = CF = DG = AH = y(say) 
In Δ's AEH and BEF, we have 
AE = BF 
∠A = ∠B 
And AH = BE 
So, by SAS configuration criterion, we have 
ΔAEH ≅ ΔBFE 
⇒ ∠1 = ∠2 and ∠3 = ∠4
But ∠1 + ∠3 = 90° and ∠2 + ∠4 = 90°
⇒ ∠1 + ∠3 + ∠2 + ∠4 = 90° + 90° 
⇒ ∠1 + ∠4 + ∠1 + ∠4 = 180° 
⇒ 2(∠1 + ∠4) = 180° 
⇒ ∠1 + ∠4 = 90°
⇒ ∠HEF = 180 - 90 = 90° 
Similarly we have ∠F = ∠G = ∠H = 90°.
Hence, EFGH is a square 

8. ABCD is a rhombus, EABF is a straight line such that EA = AB = BF. Prove that ED and FC when produced meet at right angles. 
Solution
We know that the diagonals of a rhombus are perpendicular bisector of each other 
∴ OA = OC, OB = OD, ∠AOD = ∠COD = 90°
And ∠AOB = ∠COB = 90°
In Δ BDE, A and O are mid points of BE and BD respectively 
OA || DE
OC || DG 
In ΔCFA, B and O are mid points of AF and AC respectively 
∴ OB || CF 
OD || GC 
Thus, in quadrilateral DOCG, we have 
OC || DG and OD || GC 
⇒ DOCG is a parallelogram 
∠DGC = ∠DOC 
∠DGC = 90°

9. ABCD is a parallelogram, AD is produced to E so that DE = DC and EC produced meets AB produced in F. Prove that BF = BC.
Solution
Draw a parallelogram ABCD with AC and BD intersecting at O
Produce AD to E such that DE = DC 
Join EC and produce it to meet AB produced at F. 
In ΔDCE, 
∴ ∠DCE = ∠DEC  ...CD [In a triangle, equal sides have equal angles opposite]
AB || CD  (Opposite sides of the parallelogram are parallel)
∴ AE || CD  (AB Lies on AF) 
AF || CD and EF is the transversal. 
∴ ∠DCE = ∠BFC  ...(2)  [Pair of corresponding angles]
From (1) and (2), we get 
∠DEC = ∠BFC 
In ΔAFE, 
∠AFE = ∠AEF (∠DEC = ∠BFC) 
∴ AE = AF  (In a triangle, equal angles have equal sides opposite to them) 
⇒ AD + DE = AB + BF 
⇒ BC + AB = AB + BF  [∵ AD = BC, DE = CD and CD = AB, AB = DE]
⇒ BC = BF
Previous Post Next Post