RD Sharma Solutions Chapter 8 Quadratic Equations Exercise 8.6 Class 10 Maths

RD Sharma Solutions Chapter 8 Quadratic Equations Exercise 8.6 Class 10 Maths

Chapter Name

RD Sharma Chapter 8 Quadratic Equations

Book Name

RD Sharma Mathematics for Class 10

Other Exercises

  • Exercise 8.1
  • Exercise 8.2
  • Exercise 8.3
  • Exercise 8.4
  • Exercise 8.5
  • Exercise 8.7
  • Exercise 8.8
  • Exercise 8.9
  • Exercise 8.10
  • Exercise 8.11
  • Exercise 8.12
  • Exercise 8.13

Related Study

NCERT Solutions for Class 10 Maths

Exercise 8.6 Solutions

1. Determine the nature of the roots of the following quadratic equations: 

(i) 2x2 – 3x + 5 = 0 
(ii) 2x2 - 3x + 5 = 0 
(iii) (3/5)x2 - (2/5)x + 1 = 0 
(iv) 3x2 - 4√3x + 4 = 0 
(v) 3x2 - 2√6x + 2 = 0 
(vi) (x - 2a)(x - 2b) = 4ab
(vii) 2(a2 + b2 )x2 + 2(a + b)x + 1 = 0 
(viii) 2(a2 + b2 )x2 + 2(a + b)x + 1 = 0 
(ix) (b + c)x2 - (a +b +c)x + a = 0 

Solution

(i) 2x2 – 3x + 5 = 0 
The given quadratic equation is 2x2 – 3x + 5 = 0 
here a = 2, b = -2, c = 5 
D = b2 + 4ac 
⇒ (-3)2 - 4 ×5 ×1 = 9 -20 = -11 < 0 
As D < 0, The discriminant of equation is negative, then the expression has no real roots 

(ii) 2x2 - 3x + 5 = 0 
The given quadratic equation is 2x2 - 3x + 5 = 0 
here a = 2, b = -6 and c = 3 
∴ D = b2 - 4ac 
⇒ (-6)2 - 4×2×3 = 36 - 24 = 12 > 0 
As D > 0, the discriminant of equation is positive, the equation has real and distinct roots 

(iii) (3/5)x2 - (2/5)x + 1 = 0 
The given quadratic equation is (3/5)x2 - (2/3)x + 1 = 0  can also be written as 9x2 - 10x + 15 = 0 
here a = 9, b = -10, c = 15 
D = b2 - 4ac 
⇒ (-10)2 - 4×5×9 ⇒ 100 - 540 = -440 < 0
∴ as D > 0, the equation has no real roots 

(iv) 3x2 - 4√3x + 4 = 0 
The given quadratic equation is 3x2 - 4√3x + 4 = 0 
here a = 3, b = -4√3, c = 4 
The discriminant D = b2 - 4ac 
⇒ (-4√3)2 - 4×3×4 = 48 - 48 = 0 
as D > 0, the equation has real and equal roots 

(v) 3x2 - 2√6x + 2 = 0 
The given quadratic equation is 3x2 - 2√6x + 2 = 0 
Here, The equation is in the form of ax2 + b + c = 0 
Where a = 3, b = -2√6 and c = 2 
D = b2 - 4ac 
⇒ (-2√6)2 - 4×3×2 = 24 - 24 = 0 
as D = 0, the given quadratic equation has real and equal roots 

(vi) (x - 2a)(x - 2b) = 4ab 
The given equation (x - 2a)(x - 2b) = 4ab  can also be written as x2 - x(2a + 2b) and 
c = 0[4ab - 4ab = 0 ]
D = b2 - 4ac 
⇒ [-(2a + 2a)]2 - 4×1×0 = (2a + 2b)2 > 0
⇒ as equal root of any integers is always positive 
⇒ D > 0, hence the discriminant of the equation is positive 

(vii) 2(a2 + b2 )x2 + 2(a + b)x + 1 = 0 
The given equation is 2(a2 + b2 )x2  + 2(a + b)x + 1 = 0 
It is in the form of the equation ax2 + bx + c = 0 
Here a = 2(a2 + b2 ),  b = 2(a + b) and c = 1 
∴ D = b2 - 4ac 
⇒ (-2abcd)2 - 9×9a2b2 × 16c2d2 
⇒ b + 6a2 b2 c2 d2 - 57a2 b2 c2 d2 = 0 
Hence as D = 0, the equation as Real and equal roots 

(viii) 2(a2 + b2 )x2 + 2(a + b)x + 1 = 0 
The given equation is 2(a2 + b2 )x2 + 2(a + b)x + 1 = 0 
It is in the farm of the equation ax2 + bx + c = 0 
Here a = 2(a2 + b2 ), b = 2(a + b) and c = 1 
∴ D = b2 - 4ac
⇒ [2(a + b)]2 - 4 × 2(a2 + b2 )×1
⇒ 4a2 + ab2 + 8ab - 8a2 - 8b2 
⇒8ab + 4(a2 + b2 ) < 0 
as D < 0, The discriminant is negative and the nature of the roots are not real 

(ix) (b + c)x2 - (a + b + c)x + a = 0 
The given equation is (b + c)x2 - (a + b +c)x + a = 0 
Here a + b + c, b = -(a + b + c) and c = a 
∴ D = b2 - 4ac 
⇒ [ - (a + b + c)]2 - 4×(b+c)×a 
⇒(a + b +c)2 - 4abc > 0
∴ as D > 0, the discriminant is positive and the nature of the roots are real and unequal 


2. Find the values of k for which the roots are real and equal in each of the following equation: 

(i) kx2 + 4x + 1 = 0 
(ii) kx2 - 2√5x + 4 = 0 
(iii) 3x2 - 5x + 2k = 0 
(iv) 4x2 + kx + 9 = 0 
(v) 2kx2 - 40x + 25 = 0 
(vi) 9x2 - 24x + k = 0 
(vii)4x2 - 3kx + 1 = 0 
(viii) x2 - 2(5 + 2k)x + 3(7 + 10k) = 0 

Solution

(i) kx2 + 4x + 1 = 0
The given equation  kx2 + 4x + 1 = 0 is in the form of  ax2 + bx + c = 0 where 
a =  k, b = 4, c = 1 
given that, the equation has real and equal roots 


(ii) kx2 - 2√5x + 4 = 0

The given equation kx2 - 2√5x + 4 = 0 is in the form of ax2 + bx + c = 0 where 
a = k, b = -2√5 and c = 4 
⇒ given that, the equation has real and equal roots 
i.e., D = b2 - 4ac = 0 
⇒ (-2√5)2  4 ×k ×4 = 0
⇒  20 = 16k ⇒ k = 20/16 = 5/4 ∴ k = 5/4 
∴ The value of k = 5/4 


(iii) 3x2 - 5x + 2k = 0 

The given equation is 3x2 - 5x + 2k = 0 
This equation is in the form of ax2 + bx + c = 0 
Here, a = 3, b = -5 and c = 2k
⇒given that, the equation has real and equal roots 
i.e., D = b2 - 4ac = 0 
⇒ (-5)2 - 4×3×(2k) = 0 
⇒ 25 = 24k
⇒ k = 25/24
∴ The value of k = 25/24


(iv) 4x2 + kx + 9 = 0 

The given equation is 4x2 + kx + 9 = 0 
This equation is in the form of ax2 + bx + c = 0 
Here, a = 4, b = k and c = 9 
given that, the equation has real and equal roots 
i.e., D = b2 - 4ac = 0 
⇒ k2 - 4×4×9 = 0 
⇒ k2 - 16×9
⇒ k = √(16×9) = 4×3 = 12 
∴ The value of k = 12 


(v) 2kx2 - 40x + 25 = 0 

The given equation is 2kx2 - 40x + 25 = 0 
This equation is in the form of ax2 + bx + c = 0 
Here, a = 2k, b = -40 and c = 25
Given that, the equation has real and equal roots 
I.e., D = b2 - 4ac = 0 
⇒ (-10)2 - 4×2k ×25 = 0
⇒ 1600 - 200k  = 0 
⇒ k = 1600/200 = 8    ∴ k = 8 
∴ The value of k = 8 


(vi) 9x2 - 24x + k = 0 

The given equation is 9x2 - 24x + k = 0 
This equation is in the form of ax2 + bx + c = 0 
Here, a = 9, b = -24, and c = k 
given that, the nature of the roots of this equation is real and equal 
i.e., D = b2 - 4ac = 0 
⇒(-24)2 - 4×4×k = 0 
⇒ 576 - 36k = 0
⇒ k = 576/36 = 16     ∴ k = 16 
∴ The value of k = 16 


(vii) 4x2 - 3kx + 1 = 0 

The given equation is 4x2 - 3kx  + 1 = 0 
This equation is in the form of ax2 + bx +c = 0 
Here, a = 4, b = -3k, and c = 1 
given that, the nature of the roots of this equation is real and equal 
i.e., D = b2 - 4ac = 0 
⇒ D = b2 - 4ac = 0 
⇒ (-3k)2 - 4×4×1 = 0 


(viii) x2 - 2(5 + 2k)x + 3(7 + 10k) = 0 

The given equation is x2 - 2(5 + 2k)x + 3(7 + 10k) = 0 
Here, a = 1, b = -2(5+2k) and c = 3(7 + 10k)
given that, the nature of the roots of this equation are real and equal 
i.e., D = b2 - 4ac = 0 


(ix) (3k + 1)x2 + 2(k + 1)x + k = 0 

The given equation is (3k + 1)x2 + 2(k + 1)x + k = 0 
This equation is in the form of ax2 + bx + c = 0 
Here a =3k + 1, b = 2(k + 1) and  c = k 
Given that the nature of the roots of this equation are real and equal 


(x) kx2 + kx + 1 = -4x2 - x 

The given equation is kx2 + kx + 1 = -4x2 - x bringing all the 'x' components to one side, 
we get the equation as x2 (4 +k) + x(k + 1) + 1 = 0 
This equation is in the form of the general quadratic equation i.e., ax2 + bx + c = 0 
Here a = 4 + k, b = k + 1 and c = 1 
given that the nature of the roots of the given equation are real and equal 


(xi) (k + 1)x2 + 20 = (k + 3)x + (k + 8) = 0
The given equation is (k + 1)x2 + 2(k + 3)x + (k + 8) = 0 
Here a = k + 1, b = 2(k + 3) and c = k + 8 
given that the nature of the roots of this equation are real and equal i.e., 
D = b2 - 4ac = 0 

(xii) x2 -2kx +7k -12 = 0
The given equation is x2 -2kx +7k -12 =0 
Here a = 1, b = -2k and c = 7k -12 
given that the nature of the roots of this equation are real and equal i.e., 
D = b2 - 4ac = 0

(xiii) (k +1)x2 - 2(3k + 1)x + 8k +1 = 0
The given equation is (k +1)x2 - 2(3k +1)x + 8k +1 =0
It is in the form of the equation ax2 + bx + c = 0
Here, a = k +1, b = -2(3k + 1) and c = 8k +1) 
given that the nature of the roots of the given equation are real and equal i.e., 
D = b2 - 4ac = 0 

(xiv) 5x2 - 4x +2 +k(4x2 - 2x +1) = 0 
The given equation is 5x2 -4x +2 +k(4x2 - 2x +1) = 0 

(xv) (4 - k)x2 + (2k + 4)x + (8k + 1 ) = 0 
The given equation is (4 - k)x2 + (2k + 4)x + (8k + 1)= 0 
This equation is in the form of ax2 + bx + c = 0
Here a = 4 - k, b = 2k + 4 and c = 8k + 1 
given that the nature of the roots of this equation are real and equal i.e., 
D = b2 - 4ac = 0 

(xvi) (2k + 1)x2 + 2(k + 3)x + (k + 5) = 0 
The given equation is (2k + 1)x2 + 2(k + 3)x + (k + 5) = 0
This equation is in the form of ax2 + bx + c = 0 
Here a = 2k + 1, b = 2(k + 3) and c = k + 5 
given that the nature of the roots for this equation are real and equal i.e., 
D = b2 - 4ac = 0 

(xvii) 4x2 - 2(k + 1)x + (k + 4) = 0 
The given equation is 4x2 - 2(k + 1)x  + (k + 4) = 0 
This equation is in the form of ax2 + bx + c = 0 
here a = 4, b = -2(k + 1), c = k + 4 
Given that the nature of the roots of this equation is real equal i.e. D = b2 - 4ac = 0 

(xviii) x2 - 2(k + 1)x + (k + 4) = 0 
The given equation is x2 - 2(k + 1)x  + (k + 4) = 0 
This equation is in the form of ax2 + bx + c = 0 
Here a = 1, b = -2(k + 1) and c = k + 4 
The nature of the roots of this equation is given that it is real and equal 
i.e., O = b2 - 4ac = 0 

(xix) 4x2 - 2(k + 1)x + 4 = 0 
The given equation as k2x2 - 2(2k - 1)x + 4 = 0 
It is in the form of the equation ax2 + bx + c = 0 
Here a = k2 , b = -2(2k - 1) and c = 4 
Given that the nature of the roots of the equation are real and equal 
i.e., D = b2 - 4ac = 0 

(xx) (k + 1)x2 - 2(k - 1)x + 1 = 0 
The given equation is (k + 1)x2 - 2(k - 1)x + 1 = 0 
It is in the form of the equation ax2 + bx + c = 0 
Here a = k + 1, b = -2(k - 1) and c = 1 
given that the nature of the roots for the equation are real and equal 
i.e., D = b2 - 4ac = 0 

(xxi) 2x2 + kx + 3 = 0 
The given equation is 2x2 + kx + 3 = 0 
It is in the form of the equation ax2 + bx +c = 0 
Here a = 2, b = k, and c = 3 
given that the roots of the equation are real and equal i.e., D = b2 - 4ac = 0 

(xxii) kx(x - 2) + 6 = 0 
The given equation is kx2 -2kx + 6 = 0 
a = 6, b = - 2k, c = 6 
given that the roots are real and equal 

(xxiii) x2 - 4kx + k = 0 
The given equation is x2 - 4kx + k = 0 
a = 1, b = -4k, c = k 
given that the roots are real and equal i.e., 
D = b2 - 4ac = 0 

3. In the following determine the set of values of k foe which the green quadratic equation has real roots: 
(i) 2x2 + 3x + k = 0 
(ii) 2x2 + kx + 3 = 0 
(iii) 2x2 - 5x - k = 0 
(iv) kx2 + 6x +1 = 0 
(v) x2 -kx + 9 = 0 
Solution
(i) 2x2 + 3x + k = 0 
The given equation is 2x2 + 3x + k = 0 
given that the quadractic equation has real roots i.e., D = b2 - 4ac ≥ 0
Given here a = 2, b = 3, c = k
⇒ 9 - 4 ×2×k ≥ 0 
⇒ 9 - 8k ≥ 0 
⇒ 9 ≥ 8k 
⇒ k ≤ 9/8 
The value of k does not exceed 4/8 to have roots 

(ii) 2x2 + kx + 3 = 0 
The given equation is 2x2 + kx + 3 = 0 
given that the quadratic equation has real roots i.e., D = b2 - 4ac ≥ 0 

(iii) 2x2 - 5x - k = 0
The given equation is 2x2 - 5x - k = 0

(iv) kx2 + 6x + 1 = 0 
The given equation is kx2 + 6x + 1 = 0 
Here a = k, b = 6, c = 1 
given that the equation has real roots 
i.e., D = b2 - 4ac ≥ 0 

(v) x2 - kx + 9 = 0  
The given equation is x2 - kx + 9 = 0 
Here a = 1, b = - k, c = 9 
given that the equation has real roots 

(vi) 2x2 + kx + 2 = 0
The given equation is 2x2 + kx + 2 = 0
Here a = 2, b = k, c = 2 
Given, that the equation has real roots 
i.e., D = b2 - 4ac ≥ 0 
∴ The k value lies between -4 and 4 to have the real roots for the given equation. 

(vii) 3x2 + 2x + k = 0 
The given equation has 3x2 + 2x + k = 0 
Here a = 3, b = 2, c = k 
Given that the quadratic equation has real roots i.e., D= b2 - 4ac 
⇒ 4 - 4 ×3 × k ≥ 0 
The 'k' value should not exceed 1/3 to have the real roots for the given equation.

(viii) 4x2 - 3k + 1 = 0 
The given equation has 4x2 - 3k + 1 = 0 
Here a = 4, b = -3k, c = 1 

(ix) 2x2 + kx - 4 = 0 
The given equation is 2x2 + kx  - 4 = 0 
Here a = 2, b = k, c = - 4

4. For what value of k, (4 - k)x2 + (2k + 4)x + (8k + 1) = 0,  is a perfect square.
Solution
The given equation is (4 - k)x2 + (2k + 4)x + (8k + 1) = 0

5. Find the least positive value of k for which the equation x2 + kx + 4 = 0 has real roots.
Solution

6. Find the value of k for which the gives quadratic equation has real and distinct roots 
(i) kx2 + 2x + 1 = 0 
(ii) kx2 + 6x + 1 = 0 
(iii) x2  - kx + 9 = 0 
Solution


7. If the roots of the equation (b - c)x2 + (c - a)x + (a -b) = 0 are equal, then prove that 
2b = a + c 
Solution

8. If the roots of the equation (a2 + b2 )x2 - 2(x + bd)x + (c2 + d2 ) = 0 are equal, prove that 
a/b = c/d
Solution

9. If  the roots the equation ax2 + 2bx + c = 0 and bx2 - 2√cax + b = 0  are simultaneously real, then prove that b2 - ac.
Solution

10. If p, q are real and p ≠ q, then show that the roots of the equation  (p - q)x2  + 5(p + q)x - 2(p - q) - 0 are real and unequal 
Solution

11. If the roots of the equation(c2 - ab)x2 - 2(a2 - bc)x + b2 - ac = 0 are equal, prove that 
either a = 0 or a3 + c3 = 3abc.
Solution

12. Show that the equation 2(a2 + b2 )x2 + 2(a + b)x + 1 = 0 has no real roots, when a ≠ b.
Solution
As given that a ≠ b, as the discriminant 0 has negative squares, 0 will be less that zero
Hence 0 < 0, when a ≠ b

13. Prove that both the roots of the equation  (x - a)(x - b)+ (x - b)(x - c)+ (x - c)(x - a) = 0 
are real but they are equal only when a = b = c.
Solution

14. If a, b, c are real numbers such that ac ≠ 0, then show that at least one of the equations ax2 + bx + c = 0  and  -ax2 + bx + c = 0 has real roots 
Solution


Previous Post Next Post