RD Sharma Solutions Chapter 8 Quadratic Equations Exercise 8.3 Class 10 Maths
Chapter Name | RD Sharma Chapter 8 Quadratic Equations |
Book Name | RD Sharma Mathematics for Class 10 |
Other Exercises |
|
Related Study | NCERT Solutions for Class 10 Maths |
Exercise 8.3 Solutions
Solve the following quadratic equations by factorization:
1. (x - 4)(x + 2) = 0
Solution
We have
(x - 4)(x + 2) = 0
⇒ either (x - 4) = 0 or (x + 2) = 0
⇒ x = 4 or x = -2
Thus, x = 4 and x = -2 are two roots of the equation(x - 4)(x + 2) = 0
2. (2x + 3)(3x - 7) = 0
Solution
We have,
(2x + 3)(3x- 7) = 0
⇒ (2x + 3) = 0 or (3x- 7) = 0
⇒ 2x = - 3 or 3x = 7
⇒ x = -3/2 or x = 7/3
Thus, x = -3/2 and x = 7/3 are two roots of the equation(2x + 3)(3x - 7) = 0
3. 4x2 + 5x = 0
Solution
We have 4x2 + 5x = 0
⇒ x (4x + 5) = 0
⇒ either x = 0 or 4x + 5 = 0
⇒ x = 0 or 4x = -5
⇒ x = 0 or x = -5/4
Thus, x = 0 and x = -5/4 are two roots of equation 4x2 + 5x = 0
4. 9x2 - 3x - 2 = 0
Solution
We have 9x2 - 3x - 2 = 0
⇒ 9x2 - 6x + 3x - 2 = 0
⇒ 3x (3x - 2) + 1(3x - 2) = 0
⇒ (3x - 2)(3x + 1) = 0
⇒ either 3x - 2 = 0 or 3x + 1 = 0
⇒ either 3x - 2 = 0 or 3x + 1 = 0
⇒ 3x = 2 or 3x = - 1
⇒ x = 2/3 or x = -1/3
Thus, x = 2/3 and x = -1/3 are two roots of the equation 9x2 - 3x - 2 = 0
5. 6x2 - x - 2 = 0
Solution
We have 6x2 - x - 2 = 0
⇒ 6x2 + 3x - 4x - 2 = 0
⇒ 3x(2x + 1) - 2(2x + 1) = 0
⇒ (2x + 1)(3x - 2) = 0
⇒ either 2x + 1 = 0 or 3x - 2 = 0
⇒ 2x = - 1 or 3x = 2
⇒ x = -1/2 or x = 2/3
Thus, x = -1/2 and x = 2/3 are two roots of the equation 6x2 - x - 2 = 0
6. 6x2 + 11x + 3 = 0
Solution
We have
6x2 + 11x + 3 = 0
⇒ 6x2 + 9x + 2x + 3 = 0
⇒ 3x(2x + 3) + 1 (2x + 3) = 0
⇒ (2x + 3)(3x + 1) = 0
⇒ 2x + 3 = 0 or x = -1/3
Thus, x = -3/2 and x = -1/3 are the two roots of the given equation.
7. 5x2 - 3x - 2 = 0
Solution
We have
5x2 - 3x - 2 = 0
⇒ 5x2 - 5x + 2x - 2 = 0
⇒ 5x(x - 1) + 2(x - 1) = 0
⇒ (x - 1)(5x + 2) = 0
⇒ (x - 1) = 0 or 5x + 2 = 0
⇒ x = 1 or x = -2/5
∴ x = 1 and x = -2/5 are the two roots of the given equation.
8. 48x2 - 13x - 1 = 0
Solution
We have
48x2 - 13x - 1 = 0
⇒ 48x2 - 16x + 3x - 1 = 0
⇒ 16x (3x - 1) + 1(3x - 1) = 0
⇒ (3x - 1)(16x + 1) = 0
⇒ 3x - 1 = 0 or 16x + 1 = 0
⇒ x = 1/3 or x = -1/16
∴ x= -1/16 and x = 1/3 are the two roots of the given equation.
9. 3x2 = - 11x - 10
Solution
We have
3x2 = - 11x - 10
⇒ 3x2 + 11x + 10 = 0
⇒ 3x2 + 6x + 5x + 10 = 0
⇒ 3x(x + 2) + 5(x + 2) = 0
⇒ (x + 2)(3x + 5) = 0
⇒ (x + 2) = 0 or x = -5/3
∴ x = -2 and x = -5/3 are the two roots at the quadratic equation 3x2 = -11x - 10
10. 25x(x + 1) = - 4
Solution
We have
(x + 1) = -4
⇒(25x) × x + (25x) × 10 - 4
⇒ 25x2 + 25x + 4 = 0 [25×4 = 100 ⇒ 25 = 20 + 5 ⇒ 100 = 20×5]
⇒ 25x2 + 20x + 5x + 4 = 0
⇒ 5x(5x + 4) + 1(5x + 4) = 0
⇒ (5x + 4)(5x + 1) = 0
⇒ 5x + 4 = 0 or 5x + 1 = 0
⇒ x = -4/3 or x = -1/3
∴ x = -4/3 and x = -1/5 are the two solutions of the quadratic equation 25x(x + 1) = -4
11. 10x - 1/x = 3
Solution
We have
12. 2/22 - 5/x + 2 = 0
Solution
4√3x2 + 5x - 2√3 = 0
15. a2x2 - 30bx + 2b2 = 0
22. (x + 3)/(x + 2) = (3x - 7)/(2x - 3)
⇒ 2x2 - 3x + 6x - 9 = 3x2 - x - 14
⇒ 2x2 + 3x - 9 = 3x2 - x - 14
⇒ x2 - 3x - x - 14 + 9 = 0
⇒ x2 - 4x - 5 = 0
[1x - 5 = -5 - 4 = -5 + 1]
⇒ x2 - 5x + x - 5 = 0
⇒ x(x - 5) + 1(x - 5) = 0
⇒ (x - 5)(x + 1) = 0
⇒ x - 5 = 0 or x + 1 = 0
⇒ x = 5 or x = - 1
∴ x = 5 and x = - 1 are the two roots of the given quadratic equation.
35. a/(x - a) + b/(x - b) = 2c/(x - c)
a(x2 + 1) - x(a2 + 1) = 0
a2b2x2 + b2x - a2x - 1 = 0
We have,
46. 1/x - 1/(x - 2) = 3, x ≠ 0, 2