RD Sharma Solutions Chapter 5 Trigonometric Ratios Exercise 5.2 Class 10 Maths
Chapter Name | RD Sharma Chapter 5 Trigonometric Ratios |
Book Name | RD Sharma Mathematics for Class 10 |
Other Exercises |
|
Related Study | NCERT Solutions for Class 10 Maths |
Exercise 5.2 Solutions
Evaluate each of the following (1 - 19) :
1. sin 45° sin 30° + cos 45° cos30°
Solution
2. Sin 60° cos 30° + cos 60° sin 30°
Solution
3. Cos 60° cos45° - sin 60°. sin 45°
Solution
4. sin2 30° + sin2 45° + sin2 60° + sin2 90°
Solution
5. cos2 30° + cos2 45° + cos2 60° + cos2 90°
Solution
6. tan2 30° + tan2 60° + tan2 45°
Solution
7. 2sin2 30° - 3cos2 45° + tan2 60°
Solution
8. sin2 30° cos2 45° + 4tan2 30° + (1/2)sin2 90° - 2 cos2 90° + (1/24)cos2 0°
Solution
9. 4(sin2 60° + cos4 30°) - 3(tan2 60° - tan2 45°) + 5cos2 45°
Solution
10. (cosec2 45° sec2 30°)(sin2 30° + 4 cot2 45° - sec2 60°)
Solution
11. cosec2 30° cos60° tan3 45° sin2 90° sec2 45° cot30°
Solution
Solution
13. (cos0° + sin 45° + sin30°)(sin 90° - cos45° + cos60°)
Solution
14. (sin 30°- sin 90° + 2 cos 0°)/(tan° 30 tan 60°)
Solution
15. 4/cot2 30° + 1/sin2 60° - cos2 45°
Solution
16. 4(sin2 30° + cos2 60°) - 3(cos2 45° - sin2 90°) - sin2 60°
Solution
17. (tan2 60° + 4cos2 45° + 3 sec2 30° + 5cos2 90°)/(cosec 30° + sec 60° - cot2 30°
Solution
18. sin 30°/sin 45° + tan 45°/sec 60° - sin 60°/cot 45° - cos 30°/sin 90°
Solution
19. tan 45°/cosec 30° + sec 60°/cot 45° - 5sin 90°/2cos 0°
Solution
20. 2sin 3x = √3 s = ?
Solution
Sin 3x = √3/2
Sin 3x = sin 60°
Equating angles we get,
3x = 60°
x = 20°
Sin 3x = sin 60°
Equating angles we get,
3x = 60°
x = 20°
21. 2 sin x/2 = 1 x = ?
Solution
Sin x/2 = 1/2
Sin x/2 = sin 30°
x/2 = 30°
x = 60°
Sin x/2 = sin 30°
x/2 = 30°
x = 60°
22. √3 sin x = cos x
Solution
√3 tan x = 1
tan x = 1/√3
∴ tan x = tan 30°
tan x = 1/√3
∴ tan x = tan 30°
x = 30°
23. tan x = sin 45° cos 45° + sin 30°
Solution
24. √3 tan 2x = cos 60° + sin 45° cos 45°
Solution
25. cos 2x = cos 60° cos 30° + sin 60° sin 30°
Solution
(i) tan 2θ = 2tanθ/(1 - tan2 θ)
Solution
(i)
(i)
(i) cos(A - B) = cosA cosB + sin A + sin B
Solution
28. If A = 30° B = 60° verify
(i) sin (A + B) = sin A cos B + cos A sin B
Solution
29. sin (A - B) = sin A cos B - cos A sin B
cos (A - B) = cos A cos B - sin A sin B
cos (A - B) = cos A cos B - sin A sin B
Find sin 15° cos 15°
Solution
30. In right angled triangle ABC. ∠C = 90°, ∠B = 60° . AB = 15 units. Find remaining angles and sides.
Solution
31. In ΔABC is a right triangle such that ∠C = 90° , ∠A = 45° , BC = 7 units find ∠B, AB and AC.
Solution
32. In rectangle ABCD AB = 20cm ∠BAC = 60° BC, calculate side BC and diagonals AC and BD.
Solution
33. If sin(A + B) = 1 and cos(A - B) = 1, 0° < A + B ≤ 90° A ≥ B. Fin A & B
Solution
34. If tan(A - B) = 1/√3 and tan(A + B) = √3, 0° < A + B ≤ 90° , A ≥ B, Find A & B.
Solution
35. If sin(A - B) = 1/2 and cos(A +B) = 1/2, 0° < A + B ≤ 90° , A > B, Find A & B
Solution
36. In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of
(i) sin A cos C + cos A sin C
Solution
37. Find acute angles A & B, if sin (A + 2B) = √3/2 cos(A + 4B) = 0, A > B>
Solution
38. If A and B are acute angles such that tan A = 1/2 , tan B = 1/3 and tan (A + B) = (tanA + tan B)/(1 - tan A tan B) , A + B = ?
Solution
39. In ΔPQR, right angled at Q, PQ = 3cm PR = 6cm. Determine ∠P = ? ∠R = ?
Solution