RS Aggarwal Solutions Chapter 9 Mean, Mode and Median Exercise 9A Class 10 Maths
Chapter Name | RS Aggarwal Chapter 9 Mean, Mode and Median |
Book Name | RS Aggarwal Mathematics for Class 10 |
Other Exercises |
|
Related Study | NCERT Solutions for Class 10 Maths |
Exercise 9A Solutions
1. If the mean of 5 observation x, x + 2, x + 4, x + 6 and x + 8, find the value of x.
Solution
Mean of given observations = (sum of given observations)/(total number of observation)
∴ 11 = [x + (x + 2) + (x + 4) + (x + 6) + (x + 8)]/5
⇒ 55 = 5x + 20
⇒ 5x = 55 – 20
⇒ 5x = 35
⇒ x = 35/5
⇒ x = 7
Hence, the value of x is 7.
2. If the mean of 25 observations is 27 and each observation is decreased by 7, what will be new mean?
Solution
Mean of given observations = (sum of given observations)/(total number of observations)
Mean of 25 observations = 27
∴ Sum of 25 observations = 27 × 25 = 675
If 7 is subtracted from every number, then the sum = 675 – (25 × 7)
= 675 – 175
= 500
Then, new mean = 500/25 = 20
Thus, the new mean will be 20.
Class |
1 - 3 |
3 - 5 |
5 - 7 |
7 - 9 |
Frequency |
12 |
22 |
27 |
19 |
Solution
The given data is shown as follows:
Class |
Frequency (fi) |
Class mark (xi) |
5 - 7 |
1 - 3 |
12 |
2 |
24 |
3 - 5 |
22 |
4 |
88 |
5 - 7 |
27 |
6 |
162 |
7 - 9 |
19 |
8 |
152 |
Total |
Æ©fi = 80 |
|
Æ© fi xi = 426 |
The mean of given data is given by
Thus, the mean of the following data is 5.325.
4. Find the mean using direct method:
Class |
0 - 10 |
10 - 20 |
20 - 30 |
30 - 40 |
40 - 50 |
50 - 60 |
Frequency |
7 |
5 |
6 |
12 |
8 |
2 |
Solution
5. Find the mean of the following data, using direct method:<
Class |
25 – 35 |
35 – 45 |
45 – 55 |
55 – 65 |
65 – 75 |
Frequency |
6 |
10 |
8 |
12 |
4 |
Solution
Class |
Frequency (fi) |
Mid values (xi) |
(fi × xi) |
25 - 35 |
6 |
10 |
180 |
35 - 45 |
10 |
40 |
400 |
45 - 55 |
8 |
50 |
400 |
55 - 65 |
12 |
60 |
720 |
65 - 75 |
4 |
70 |
280 |
|
∑ fi = 40 |
|
∑(fi × xi) = 1980 |
6. Find the mean of the following data, using direct method:
Class |
0 – 100 |
100-200 |
200-300 |
300-400 |
400-500 |
Frequency |
6 |
9 |
15 |
12 |
8 |
Solution
Class |
Frequency (fi) |
Mid values (xi) |
(fi × xi) |
0 - 100 |
6 |
50 |
300 |
100 - 200 |
5 |
150 |
1350 |
200 - 300 |
6 |
250 |
3750 |
300 - 400 |
12 |
350 |
4200 |
400 - 500 |
8 |
450 |
3600 |
∑ fi = 40 |
∑(fi × xi) = 13200 |
7. Using an appropriate method, find the mean of the following frequency distribution:
Class |
84 - 90 |
90 - 96 |
96 - 102 |
102 - 108 |
108 - 114 |
114 - 120 |
Frequency |
8 |
10 |
16 |
23 |
12 |
11 |
which method did you see, and why ?
Solution
Class |
Frequency (fi) |
Mid values (xi) |
(fi × xi) |
84 - 90 |
8 |
87 |
696 |
90 - 96 |
10 |
93 |
930 |
96 - 102 |
16 |
99 |
1584 |
102 - 108 |
23 |
105 |
2415 |
108 - 114 |
12 |
111 |
1332 |
114 – 120 |
11 |
117 |
1287 |
Total |
∑ fi = 80 |
∑(fi × xi) = 8244 |
The mean of the data is given by,
Class |
0 - 10 |
10 - 20 |
20 – 30 |
30 - 40 |
40 - 50 |
Frequency |
3 |
4 |
P |
3 |
2 |
Solution
The given data is shown as follows:
Class |
Frequency (fi) |
Mid values (xi) |
(fi xi) |
0 - 10 |
3 |
5 |
15 |
10 - 20 |
4 |
15 |
60 |
20 - 30 |
p |
25 |
25p |
30 - 40 |
3 |
35 |
105 |
40 - 50 |
2 |
45 |
90 |
Total |
∑fi = 12 + p |
∑fi xi = 270 + 25p |
The mean of the given data is given by,
⇒ 24 (12 + p) = 270 + 25p
⇒ 288 + 24p = 270 + 25p
⇒ 25p – 24p = 288 – 270
⇒ p = 18
Hence, the value
of p is 18.
9. The following distribution shows the daily pocket allowance of children of a locality. If the mean pocket allowance is ₹ 18, find the missing frequency f.
Daily pocket allowance (in ₹) |
11 - 13 |
13 - 15 |
15 - 17 |
17 - 19 |
19 - 21 |
21 - 23 |
23 - 25 |
Number of children |
7 |
6 |
9 |
13 |
f |
5 |
4 |
Solution
The given data is shown as follows:
Daily pocket allowance (in ₹) |
Number of children (fi) |
Class mark (xi) |
fi xi |
11 - 13 |
7 |
12 |
84 |
13 - 15 |
6 |
14 |
84 |
15 - 17 |
9 |
16 |
144 |
17 - 19 |
13 |
18 |
234 |
19 - 21 |
f |
20 |
20f |
21 - 23 |
5 |
22 |
110 |
23 - 25 |
4 |
24 |
96 |
Total |
∑fi = 44 + f |
∑fi xi = 752 + 20f |
The mean of the given data is given by,
⇒ 18 (44 + f) = 752 + 20f
⇒ 792 + 18f = 752 + 20f
⇒ 20f – 18f = 792 – 752
⇒ 2f = 40
⇒ f = 20
Hence, the value of f is 20.
10. The mean of following frequency distribution is 54. Find the value of p.
Class |
0 - 20 |
20 - 40 |
40 - 60 |
60 - 80 |
80 - 100 |
Frequency |
7 |
p |
10 |
9 |
13 |
Solution
The given data is shown as follows:
Class |
Frequency (fi) |
Class mark (xi) |
fi xi |
0 - 20 |
7 |
10 |
70 |
20 - 40 |
p |
30 |
30p |
40 - 60 |
10 |
50 |
500 |
60 - 80 |
9 |
70 |
630 |
80 - 100 |
13 |
90 |
1170 |
Total |
∑fi = 39 + p |
∑fi xi = 2370 + 30p |
The mean of the given data is given by,
⇒ 54 = (2370 + 30p)/(39 + p)
⇒ 54 (39 + p) = 2370 + 30p
⇒ 2106 + 54p = 2370 – 2106
⇒ 24p = 264
⇒ p = 11
Hence, the value of p is 11.
11. The mean of the following frequency data is 42, Find the missing frequencies x and y if the sum of frequencies is 100.
Class interval |
0 – 10 |
10 – 20 |
20 – 30 |
30 – 40 |
40 – 50 |
50 – 60 |
60 - 70 |
70 – 80 |
Frequency |
7 |
10 |
x |
13 |
y |
10 |
14 |
9 |
Find x and y.
Solution
The given data is shown as follows:
Class interval |
Frequency (fi) |
Class mark (xi) |
fi xi |
0 – 10 |
7 |
5 |
35 |
10 – 20 |
10 |
15 |
150 |
20 – 30 |
x |
25 |
25x |
30 – 40 |
13 |
35 |
455 |
f40 – 50 |
y |
45 |
45y |
50 – 60 |
10 |
55 |
550 |
60 – 70 |
14 |
65 |
910 |
70 – 80 |
9 |
75 |
675 |
Total |
Æ© fi = 63 + x + y |
Æ© fi xi = 2775 + 25x + 45y |
Sum of the frequencies = 100
⇒ ∑i fi = 100
⇒ 63 + x + y = 100
⇒ x + y = 100 – 63
⇒ x + y = 37
⇒ y = 37 – x ...(1)
Now, the mean of the given data is given by,
⇒ 42 = (2775 + 25x + 45y)/100
⇒ 4200 = 2775 + 25x + 45y
⇒ 4200 – 2775 = 25x + 45y
⇒ 1425 = 25x + 45(37 – x) [from (1)]
⇒ 1425 = 25x + 1665 – 45x
⇒ 20x = 1665 – 1425
⇒ 20x = 240
⇒ x = 12
If x = 12, then y = 37 – 12 = 25
Thus, the value of x is 12 and y is 25.
12. The daily expenditure of 100 families are given below. Calculate f1 and f2 if the mean daily expenditure is ₹ 188.
Expenditure (in ₹) |
140 - 160 |
160 - 180 |
180 - 200 |
200 - 220 |
220 - 240 |
Number of families |
5 |
25 |
f1 |
f2 |
5 |
Solution
The given data is shown as follows:
Expenditure (in ₹) |
Number of families (fi) |
Class mark (xi) |
fi xi |
140 - 160 |
5 |
150 |
750 |
160 - 180 |
25 |
170 |
4250 |
180 - 200 |
F1 |
190 |
190f1 |
200 - 220 |
F2 |
210 |
210f2 |
220 – 240 |
5 |
230 |
1150 |
Total |
∑fi = 35 + f1 + f2. |
∑fi xi = 6150 + 190f1 + 210f2 |
Sum of the frequencies = 100
⇒ ∑i fi = 100
⇒ 35 + f1 + f2 = 100
⇒ f1 + f2 = 100 – 35
⇒ f1 + f2 = 65
⇒ f2 = 65 – f1 ….(1)
Now, the mean of the given data is given by,
⇒ 1880 = 6150 + 190f1 + 210f2
⇒ 18800 - 6150 = 190f1 + 210f2
⇒ 12650 = 190f1 + 210(65 – f1) [From (1)]
⇒ 12650 = 190f1 – 210f1 + 13650
⇒ 20f1 = 13650 – 12650
⇒ 20f1 = 1000
⇒ f1 = 50
If f1 = 50, then f2 = 65 – 50 = 15
Thus, the value of f1 is 50 and f2 is 15.
13. Find the mean of the following frequency distribution is 57.6 and the total number of observation is 50.
Class |
0 - 20 |
20 - 40 |
40 - 60 |
60 - 80 |
80 - 100 |
100 - 120 |
Frequency |
7 |
f1 |
12 |
f2 |
8 |
5 |
Solution
Class |
Frequency (fi) |
Mid values (xi) |
(fi × xi) |
0 - 20 |
7 |
10 |
70 |
20 - 40 |
F2 |
30 |
30f1 |
40 – 60 |
12 |
50 |
600 |
60 – 80 |
18 - f1 |
70 |
1260 – 70f1 |
80 – 100 |
8 |
90 |
720 |
100 - 120 |
5 |
110 |
550 |
Total |
∑fi = 50 |
∑(fi × xi) = 3200 – 40f1 |
We have:
7 + f1 + 12 + f2 + 8 + 5 = 50
⇒ f1 + f2 = 18
⇒ f2 = 18 – f1
⇒ 57.6 = (3200 – 40f1)/50
⇒ 40f1 = 320
∴ f1 = 8
And f2 = 18 – 8
⇒ f2 = 10
∴ The missing frequencies are f1 = 8 and f2 = 10.
14. During a medical check-up, the number of heartbeats per minute of 30 patients were recorded and summarized as follows:
Number of heartbeats |
65 - 68 |
68 - 71 |
71 - 74 |
74 - 77 |
77 - 80 |
80 - 83 |
83 - 86 |
Number of patients |
2 |
4 |
3 |
8 |
7 |
4 |
2 |
Find the mean heartbeats per minute for these patients, choosing a suitable method.
Solution
Using direct method, the given data is shown as follows:
Number of heartbeats per minute |
Number of patients (fi) |
Class mark (xi) |
fi xi |
65 - 68 |
2 |
66.5 |
133 |
68 – 71 |
4 |
69.5 |
278 |
71 - 74 |
3 |
72.5 |
217.5 |
74 - 77 |
8 |
75.5 |
604 |
77 - 80 |
7 |
78.5 |
549.5 |
80 - 83 |
4 |
81.5 |
326 |
83 – 86 |
2 |
84.5 |
169 |
Total |
∑fi = 30 |
∑fi xi = 2277 |
The mean of the data is given by,
= 2277/30= 75.9
Thus, the mean heartbeats per minute for these patients is 75.9.
15. Find the mean marks per student, using assumed-mean method:
Marks |
0 - 10 |
10 - 20 |
20 - 30 |
30 - 40 |
40 - 50 |
50 - 60 |
Number of students |
12 |
18 |
27 |
20 |
17 |
6 |
Solution
Class |
Frequency (fi) |
Mid values (xi) |
Deviation (di) di = (xi – 25) |
(fi × di) |
0 - 10 |
12 |
5 |
-20 |
-240 |
10 - 20 |
18 |
15 |
-10 |
-180 |
20 - 30 |
27 |
25 = A |
0 |
0 |
30 - 40 |
20 |
35 |
10 |
200 |
40 - 50 |
17 |
45 |
20 |
340 |
50 - 60 |
6 |
55 |
30 |
180 |
Total |
∑fi = 100 |
∑(fi × di) = 300 |
Class |
100 - 120 |
120 - 140 |
140 - 160 |
160 - 180 |
180 - 200 |
Frequency |
10 |
20 |
30 |
15 |
5 |
Solution
Class |
Frequency (fi) |
Mid values (xi) |
Deviation (di) di = (xi – 150) |
(fi × di) |
100 - 120 |
10 |
110 |
-40 |
-400 |
120 - 140 |
20 |
130 |
-20 |
-400 |
140 - 160 |
30 |
150 = A |
0 |
0 |
160 - 180 |
15 |
170 |
20 |
300 |
180 - 200 |
5 |
190 |
40 |
200 |
∑fi = 80 |
∑(fi × di) = -300 |
Let A = 150 be the assumed mean, Then we have:
Class |
0 - 20 |
20 - 40 |
40 - 60 |
60 - 80 |
80 - 100 |
Frequency |
20 |
35 |
52 |
44 |
38 |
Solution
Class |
Frequency (fi) |
Mid values (xi) |
Deviation (di) di = (xi – 50) |
(fi × di) |
0 - 20 |
20 |
10 |
-40 |
-800 |
20 - 40 |
35 |
30 |
-20 |
-700 |
40 - 60 |
52 |
50 = A |
0 |
0 |
60 - 80 |
44 |
70 |
20 |
880 |
80 - 100 |
38 |
90 |
40 |
1520 |
100 - 120 |
31 |
110 |
60 |
1860 |
∑fi = 220 |
∑(fi × di) = 2760 |
Let A = 50 be the assumed mean. Then we have:
18. The following table gives the literacy rate (in percentage) in 40 cities. Find the mean literacy rate, choosing a suitable method.
Literacy rate (%) |
45 - 55 |
55 - 65 |
65 - 75 |
75 - 85 |
85 - 95 |
Number of cities |
4 |
11 |
12 |
9 |
4 |
Solution
Using Direct method, the given data is shown as follows:
Literacy rate (%) |
Number of cities (fi) |
Class mark (xi) |
(fi xi) |
45 - 65 |
4 |
50 |
200 |
55 - 65 |
11 |
60 |
660 |
65 - 75 |
12 |
70 |
840 |
75 – 85 |
9 |
80 |
720 |
85 - 95 |
4 |
90 |
360 |
Total |
∑fi = 40 |
|
∑fi xi = 2780 |
The mean of the data is given by,
= 2780/40= 69.5
Thus, the
mean literacy is 69.5 %.
19. Find the mean of the following frequency distribution using step-deviation method.
Class |
0 - 10 |
10 - 20 |
20 - 30 |
30 - 40 |
40 - 50 |
Frequency |
7 |
10 |
15 |
8 |
10 |
Solution
Let us choose a = 25, h = 10, then di = xi – 25 and ui = (xi – 25)/10
Using step-deviation method, the given data is shown as follows:
Class |
Frequency (fi) |
Class mark (xi) |
di = xi – 25 |
ui = (xi – 25)/10 |
(fi ui) |
0 - 10 |
7 |
5 |
-20 |
-2 |
-14 |
10 - 20 |
10 |
15 |
-10 |
-1 |
-10 |
20 - 30 |
15 |
25 |
0 |
0 |
0 |
30 - 40 |
8 |
35 |
10 |
1 |
8 |
40 - 50 |
10 |
45 |
20 |
2 |
20 |
Total |
∑fi = 50 |
|
|
|
∑fi ui = 4 |
The mean of the data is given by,
= 25 + 4/50 × 10= 25 + 4/5
= (125 +
4)/5
= 129/5
= 25.8
Thus, the mean
is 25.8.
20. Find the mean of the following data, using step-deviation method:
Class |
5 - 15 |
15 - 25 |
25 - 35 |
35 - 45 |
45 - 55 |
55 - 65 |
65 - 75 |
Frequency |
6 |
10 |
16 |
15 |
24 |
8 |
7 |
Solution
Let us choose a = 40, h = 10, then di = xi – 40 and ui = (xi – 40)/10
Using step-deviation method, the given data is shown as follows:
Class |
Frequency (fi) |
Class mark (xi) |
di = xi – 40 |
ui = (xi – 40)/10 |
(fi ui) |
5 - 15 |
6 |
10 |
-30 |
-3 |
-18 |
15 - 25 |
10 |
20 |
-20 |
-2 |
-20 |
25 - 35 |
16 |
30 |
-10 |
-1 |
-16 |
35 – 45 |
15 |
40 |
0 |
0 |
0 |
45 – 55 |
24 |
50 |
10 |
1 |
24 |
55 – 65 |
8 |
60 |
20 |
2 |
16 |
65 – 75 |
7 |
70 |
30 |
3 |
21 |
Total |
∑fi = 86 |
∑fi ui = 7 |
The mean of the data is given by,
= 40 + 7/86 × 10
= 40 + 70/86
= 40 + 0.81
= 40.81
21. The weights of tea in 70 packets are shown in the following table:
Weight |
200 - 201 |
201 - 202 |
202 - 203 |
203 - 204 |
204-205 |
205-206 |
Number of packets |
13 |
27 |
18 |
10 |
1 |
1 |
Find the mean weight of packets using step deviation method.
Solution
Let us choose a = 202.5, h = 1, then di = xi – 202.5 and ui = (xi – 202.5)/1
Using step-deviation method, the given data is shown as follows:
Weight |
Number of packets (fi) |
Class mark (xi) |
di = xi – 202.5 |
ui = (xi – 202.5)/1 |
(fi ui) |
200 - 201 |
13 |
200.5 |
-2 |
-2 |
-26 |
201 – 202 |
27 |
201.5 |
-1 |
-1 |
-27 |
202 – 203 |
18 |
202.5 |
0 |
0 |
0 |
203 - 204 |
10 |
203.5 |
1 |
2 |
10 |
204 – 205 |
1 |
204.5 |
2 |
3 |
2 |
205 - 206 |
1 |
205.5 |
3 |
|
3 |
Total |
∑fi = 70 |
|
|
|
∑fi ui = - 38 |
The mean of the given data is given by,
= 202.5 + (-38/70) × 1
= 202.5 – 0.542
= 201.96
Hence, the mean is 201.96 g.
22. Find the mean of the following frequency distribution table using a suitable method:
Class |
20 - 30 |
30 - 40 |
40 - 50 |
50 - 60 |
60 - 70 |
Frequency |
25 |
40 |
42 |
33 |
10 |
Solution
Let us choose a = 45, h = 10, di = xi – 45 and ui = (xi – 45)/10
Using step-deviation method, the given data is shown as follows:
Weight |
Number of packets (fi) |
Class mark (xi) |
di = xi - 45 |
ui = (xi – 45)/10 |
(fi ui) |
20 - 30 |
25 |
35 |
-20 |
-2 |
-50 |
30 - 40 |
40 |
35 |
-10 |
-1 |
-40 |
40 - 50 |
42 |
45 |
0 |
0 |
0 |
50 - 60 |
33 |
55 |
10 |
1 |
33 |
60 – 70 |
10 |
65 |
20 |
2 |
20 |
Total |
∑fi = 150 |
|
|
|
∑fi ui = - 37 |
The mean of the given data is given by,
= 45 – (37/150) × 10= 45 – 37/15
= 45 – 2.466
= 42.534
Hence, the mean is 42.534.
23. In an annual examination, marks (out of 90) obtained by students of Class X in mathematics are given below:
Marks Obtained |
0 - 15 |
15 - 30 |
30 - 45 |
45 - 60 |
60 - 75 |
75 - 90 |
Number of students |
2 |
4 |
5 |
20 |
9 |
10 |
Find the mean marks.
Solution
Let us choose a = 52.5, h = 15, then di = xi – 52.5 and ui = (xi – 52.5)/15
Using step-deviation method, the given data is shown as follows:
Weight |
Number of students (fi) |
Class mark (xi) |
di = xi – 37.5 |
ui = (xi – 52.5)/15 |
(fi ui) |
0 - 15 |
2 |
7.5 |
-45 |
-3 |
-6 |
15 - 30 |
4 |
22.5 |
-30 |
-2 |
-8 |
30 - 45 |
5 |
37.5 |
-15 |
-1 |
-5 |
45 - 60 |
20 |
52.5 |
0 |
0 |
0 |
60 – 75 |
9 |
67.5 |
15 |
1 |
9 |
75 – 90 |
10 |
82.5 |
30 |
2 |
20 |
Total |
∑fi = 50 |
∑fi ui = 10 |
The mean of the given data is given by,
= 52.5 + (10/50) × 15
= 52.5 + 3
= 55.5
Thus, the mean is 55.5.
24. Find the arithmetic mean of the following frequency distribution using step-deviation method:
Age (in years) |
18 - 24 |
24 - 30 |
30 - 36 |
36 - 42 |
42 – 48 |
48 - 54 |
Number of workers |
6 |
8 |
12 |
8 |
4 |
2 |
Solution
Class |
Frequency (fi) |
Mid values (xi) |
ui = (xi – A)/h = (xi – 33)/6 |
(fi × ui) |
18 - 24 |
6 |
21 |
-2 |
-12 |
24 - 30 |
8 |
27 |
-1 |
-8 |
30 - 36 |
12 |
33 = A |
0 |
0 |
36 - 42 |
8 |
39 |
1 |
8 |
42 – 48 |
4 |
45 |
2 |
8 |
48 – 54 |
2 |
51 |
3 |
6 |
Total |
∑fi = 40 |
|
|
∑(fi × ui) = 2 |
Now, A = 33, h = 6, ∑fi = 40 and ∑(fi × ui) = 2
25. Find the mean of the following data using step-deviation method:
Class |
500 - 520 |
520 - 540 |
540 - 560 |
560 - 580 |
580 - 600 |
600 – 620 |
Frequency |
14 |
9 |
5 |
4 |
3 |
5 |
Solution
Class |
Frequency (fi) |
Mid values (xi) |
ui = (xi - A)/h = (xi – 550)/20 |
(fi × ui) |
500 - 520 |
14 |
510 |
-2 |
-28 |
520 - 540 |
9 |
530 |
-1 |
-9 |
540 - 560 |
5 |
550 = A |
0 |
0 |
560 - 580 |
4 |
570 |
1 |
4 |
580 - 600 |
3 |
590 |
2 |
6 |
600 - 620 |
5 |
610 |
3 |
15 |
|
∑fi = 40 |
|
|
∑(fi × ui) = - 12 |
Now, a = 550, h = 20, ∑fi = 40 and ∑(fi × ui) = - 12
26. Find the mean age from the following frequency distribution:
Age (in years) |
25 - 29 |
30 - 34 |
35 - 39 |
40 - 44 |
45 - 49 |
50 - 54 |
55 - 59 |
Number of persons |
4 |
14 |
22 |
16 |
6 |
5 |
3 |
Solution
Class |
Frequency (fi) |
Mid values (xi) |
ui = (xi – A)/h = (xi – 42)/5 |
(fi × ui) |
24.5 – 29.5 |
4 |
27 |
-3 |
-12 |
29.5 – 34.5 |
14 |
32 |
-2 |
-28 |
34.5 – 39.5 |
22 |
37 |
-1 |
-22 |
39.5 – 44.5 |
16 |
42 = A |
0 |
0 |
44.5 – 49.5 |
6 |
47 |
1 |
6 |
49.5 – 54.5 |
5 |
52 |
2 |
10 |
54.5 – 59.5 |
3 |
57 |
3 |
9 |
|
∑fi = 70 |
|
|
∑ (fi × ui) = - 37 |
Now, A = 42, h = 5, ∑ fi = 70 and ∑ (fi × ui) = - 37
27. The following table shows the age distribution of patients of malaria in a village during a particular month:
Age in (years) |
5 - 14 |
15 - 24 |
25 - 34 |
35 - 44 |
45 - 54 |
55 - 64 |
No. of cases |
6 |
11 |
21 |
23 |
14 |
5 |
Find the average age of the patients.
Solution
Class |
Frequency (fi) |
Mid values (xi) |
ui = (xi – A)/h = (xi – 29.5)/10 |
(fi × ui) |
4.5 – 14.5 |
6 |
9.5 |
-2 |
-12 |
14.5 – 24.5 |
11 |
19.5 |
-1 |
-11 |
24.5 – 34.5 |
21 |
29.5 = A |
0 |
0 |
34.5 – 44.5 |
23 |
39.5 |
1 |
23 |
44.5 – 54.5 |
14 |
49.5 |
2 |
28 |
54.5 – 64.5 |
5 |
59.5 |
3 |
15 |
|
∑fi = 80 |
|
|
∑(fi × ui) = 43 |
Now, A = 29.5, h = 10, ∑ fi = 80 and ∑ (fi × ui) = 43
Weight (in grams) |
75 - 79 |
80 - 84 |
85 - 89 |
90 - 94 |
95 - 99 |
100 - 104 |
105 - 109 |
No. of eggs |
4 |
9 |
13 |
17 |
12 |
3 |
2 |
Calculate their mean weight to the nearest gram.
Solution
Let us choose a = 92, h = 5, then di = xi – 92 and ui = (xi – 92)/5
Using step-deviation method, the given data is shown as follows
Weight (in grams) |
Number of eggs (fi) |
Class mark (xi) |
di = xi - 92 |
ui = (xi – 92)/5 |
(fi ui) |
74.5 – 79.5 |
4 |
77 |
-15 |
-3 |
-12 |
79.5 – 84.5 |
9 |
82 |
-10 |
-2 |
-18 |
84.5 – 89.5 |
13 |
87 |
-5 |
-1 |
-13 |
89.5 – 94.5 |
17 |
92 |
0 |
0 |
0 |
94.5 – 99.5 |
12 |
97 |
5 |
1 |
12 |
99.5 – 104.5 |
3 |
102 |
10 |
2 |
6 |
104.5 – 109.5 |
2 |
107 |
15 |
3 |
6 |
Total |
∑fi = 60 |
|
|
|
∑fi ui = - 19 |
The mean of the given data is given by,
Marks |
0 - 5 |
5 - 10 |
10 - 15 |
15 - 20 |
20 - 25 |
25 - 30 |
30 - 35 |
35 - 40 |
No. of students |
3 |
10 |
25 |
49 |
65 |
73 |
78 |
80 |
Solution
Let us choose a = 17.5, h = 5, then di = xi – 17.5 and ui = (xi – 17.5)/5
Using step-deviation method, the given data is shown as follows:
Marks |
Number of students (cf) |
Frequency (fi) |
Class mark (xi) |
di = xi – 17.5 |
ui = (xi – 17.5)/3 |
(fi ui) |
0 - 5 |
3 |
3 |
2.5 |
-15 |
-3 |
-9 |
5 - 10 |
10 |
7 |
7.5 |
-10 |
-2 |
-14 |
10 - 15 |
25 |
15 |
12.5 |
-5 |
-1 |
-15 |
15 - 20 |
49 |
24 |
17.5 |
0 |
0 |
0 |
20 - 25 |
65 |
16 |
22.5 |
5 |
1 |
16 |
25 - 30 |
73 |
8 |
27.5 |
10 |
2 |
16 |
30 – 35 |
78 |
5 |
32.5 |
15 |
3 |
15 |
35 – 40 |
80 |
2 |
37.5 |
20 |
4 |
8 |
Total |
∑ fi = 80 |
∑ fi ui = 17 |
= 17.5 + (17/80) × 5
= 17.5 + 1.06
= 18.56
Thus, the mean marks correct to 2 decimal places is 18.56.