RS Aggarwal Solutions Chapter 7 Trigonometric Ratios of Complementary Angles Exercise 7 Class 10 Maths
Chapter Name | RS Aggarwal Chapter 7 Trigonometric Ratios of Complementary Angles |
Book Name | RS Aggarwal Mathematics for Class 10 |
Other Exercises |
|
Related Study | NCERT Solutions for Class 10 Maths |
Exercise 7 Solutions
1. Without using trigonometric tables, evaluate:
(i) sin 16°/cos 74°
(ii) sec 11°/cosec 79°
(iii) tan 27°/cot 63°
(iv) cos 35°/sin 55°
(v) cosec 42°/sec 48°
(vi) cot 30°/tan 52°
Solution
(i) sin 16°/cos 74°
= sin (90° - 74°)/cos 74°
= cos 74°/cos 74° [∵ sin (90° - θ) = cos θ]
= 1
(ii) sec 11°/cosec 70°
= sec (90° - 79°)/cosec 79°
= cosec 79°/cosec 79° [∵ sec (90 – θ) = cosec θ]
= 1
(iii) tan 27°/cot 63°
= tan (90° - 63°)/cos 30°
= cos 63°/cos 63° [∵ tan (90 – θ) = cot θ]
= 1
(iv) cos 35°/sin 55°
= cos(90° - 55°)/sin 55°
= sin 55°/sin 55° [∵ tan (90 – θ) = cot θ]
= 1
(v) cosec 42°/sec 48°
= cosec (90° - 48°)/sec 40°
= sec 48°/sec 48° [∵ sec (90 – θ) = cosec θ]
= 1
(vi) cot 38°/tan 52°
= cot (90° - 52°)/tan 52°
= tan 52°/tan 52° [∵ sec (90 – θ) = cosec θ]
= 1
2. Without using trigonometric tables, prove that:
(i) cos 81° - sin 9°
(ii) tan 71° - cot 19° = 0
(iii) cosec 80° - sec 10 = 0
(iv) cosec2 72° - tan2 18° = 1
(v) cos2 75° + cos2 15° = 1
(vii) sin2 48° + sin2 42° = 1
(viii) cos2 57°. sin2 33° = 0
(ix) (sin 65° + cos 25°) (sin 65° - cos 25°) = 0
Solution
(i) LHS = cos 81° – sin 9°
= cos (90° - 9°) – sin 9°
= sin 9° - sin 9°
= 0
= RHS
(ii) LHS = tan 71° - cot 19°
= tan (90° - 19°) – cot 19°
= cot 19° - cot 19°
= 0
= RHS
(iii) LHS = cosec 80° - sec 10°
= cosec (90° - 10°) – sec 10°
= sec 10° - sec 10°
= 0
= RHS
(iv) LHS = cosec2 72° - tan2 18°
= cosec2 (90° - 18°) – tan2 18°
= sec2 18° - tan2 18°
= 1
= RHS
(v) LHS = cos2 75° + cos2 15°
= cos2 (90° - 15°) + cos2 15°
= sin2 15° + cos2 15°
= 1
(vi) LHS = tan2 66° - cot2 24°
= tan2 (90° - 24°) – cot2 24°
= cot2 24° - cot2 24°
= 0
= RHS
(vii) LHS = sin2 48° + sin2 42°
= sin2(90° - 42°) + sin2 42°
= cos2 42° + sin2 42°
= 1
(viii) LHS = cos2 57° - sin2 33°
= cos2 (90° - 33°) – sin2 33°
= sin2 33° - sin2 33°
= 0
= RHS
(ix) LHS = (sin 65° + cos 25°) (sin 65° - cos 25°)
= sin2 65° - cos2 25°
= cos2 25° - cos2 25°
= 0
= RHS
3. Without using trigonometric tables, prove that:
(i) sin 53° cos 37° + cos 53°sin 37° = 1
(ii) cos 54° cos 36° - sin 54° sin 36° = 0
(iii) sec 70° sin 20° + cos 20° cosec 70° = 2
(iv) sin 35° sin 55° - cos 35°cos 55° = 0
(v) (sin 72° + cos 18°) (sin 72° - cos 18°) = 0
(vi) tan 48° tan 23° tan 42° tan 67° = 1
Solution
(i) LHS = sin 53° cos 37° + cos 53° sin37°
= sin (90°- 37°) cos 37° + cos (90° - 37°) sin 37°
= cos2 37° cos 37° + sin 37° sin 37°
= cos2 37° + sin2 37°
= 1
= RHS
(ii) LHS = cos 54° cos 36°- sin 54°sin36°
= cos (90° - 36) cos 36° sin (90° - 36°) sin 36°
= sin 36° cos 36° - cos 36° sin 36°
= 0
= RHS
(iii) LHS = sec 70° sin 20° + cos 20° cosec 70°
= sec (90° - 20°) sin 20°+ cos 20° cosec (90°- 20°)
= cosec 20°. 1/cosec 20° + 1/sec 20°. sec 20°
= 1 + 1
= RHS
(iv) LHS = sin 35° sin 55° - cos 35° cos 55°
= sin 35° cos(90° - 55°) - cos 35° sin (90° - 55°)
= sin 35° cos 35° - cos 35° sin 35°
= 0
= RHS
(v) LHS = (sin 72° + cos 18°) (sin 72° - cos 18°)
= (sin 72° + cos 18°) (cos(90° – 72°) - cos 18°]
= (sin 72° + cos 18°) (cos 18° - cos 18°)
= (sin 72° + cos 18°) (0)
= RHS
(vi) LHS = tan 48° tan 23° tan 42° tan 67°
= cot (90°- 48°) cot (90° - 23) tan 42° tan 67°
= cot 42° cot 67° tan 42° tan 67°
= 1/tan 42° × 1/tan 67° × tan 42° × tan 67°
= 1
= RHS
4. Without using trigonometric tables, prove that:
(i) sin 70°/cos 20° + cosec 20°/sec 70° - 2 cos 70° cosec 20° = 0
(ii) cos 80°/sin 10° + cos 59° cosec 31° = 2
(iii) 2 sin 68°/cos 22° - 2 cot 15°/5 tan 75° - (3 tan 45° tan 20° tan 40° tan 50° tan 70°)/5 = 1
(iv) sin 18°/cos 72° + √3 (tan 10° tan 30° tan 40° tan 50° tan 80°) = 2
(v) 7 cos 55°/3 sin 35° = 4(cos 70° cosec 20°)/3(tan 5° tan 25° tan 45° tan 65° tan 85°) = 1
Solution
(i) LHS = sin 70°/cos 20° + cosec 20°/sec 70° - 2 cos 70° cosec 20°
= sin 70°/sin(90° - 20°) + sec(90° - 20°)/sec 70° - 2 cos 70° sec(90° - 20°)
= sin 70°/sin 70° + sec 70°/sec 70° - 2 cos 70° sec 70°
= 1 + 1 – 2 × cos 70° × 1/cos 70°
= 2 – 2
= 0
= RHS
(ii) LHS = cos 80°/sin 10° + cos 59° cosec 31°
= cos 80°/sin(90° - 10°) + sin(90° - 59°) cosec 31°
= cos 80°/cos 80° + sin 31° cosec 31°
= 1 + sin 31° × 1/sin 31°
= 1 + 1
= 2
= RHS
(iii) LHS = 2 sin 68°/cos 22° - 2 cot 15°/5 tan 75° - (3 tan 45° tan 20° tan 40° tan 50° tan 70°)/5
(iv) LHS = sin 18°/cos 72° + √3 tan (10° tan 30° tan 40° tan 50° tan 80°)
= sin 18°/sin (90° - 72°) + √3[cot (90° - 10°) × 1/√3 × cot (90° - 40°) × tan 50° × tan 80°]
= sin 18°/sin 18° + √3(cot 80° × cot 50° × tan 50° × tan 80°)/√3
= 1 + (1/tan 80° × 1/tan 50° × tan 50° × tan 80°)
= 1 + 1
= 2
= RHS
(v) LHS = (7 cos 55°)/3 sin 35° - 4(cos 70° cosec 20°)/3(tan 5° tan 25° tan 45° tan 65° tan 85°)
= (7 cos 55°)/3 cos (90° - 35°) – 4 [sin(90° - 70°) cosec 20°)/3[cot(90° - 5°) × cot(90° - 25°) × 1 × tan 65° × tan 85°
= 7 cos 55°/3 cos 55° - 4(sin 20° cosec 20°)/3(cot 85° cot 65° tan 65° tan 85°)
= 7/3 – 4 (sin 20° × 1/sin 20°)/[3(1/tan 85° × 1/tan 60° × tan 65° × tan 85°)
= 7/3 – 4/3
= 3/3
= 1
= RHS
5. Prove that:
(i) sin θ cos (90° - θ) + sin
(90° - θ) cos θ = 1
(ii) sin θ/cos(90° - θ) + cos
θ/sin(90° - θ) = 2
(iii) sin θ
cos(90° - θ) cos θ/sin(90°- θ) + cos θ sin (90° - θ) sin θ/cos(90° - θ) = 1
(iv) cos (90° - θ)
sec(90° - θ)tan θ/cosec(90° – θ) sin(90° - θ) cot(90° - θ) + tan(90° - θ)/cot
θ = 2
(v) cos (90° - θ)/(1 +
sin(90° - θ)/cos(90° - θ) = 2 cosec θ
(vi) sec(90°- θ) cosec θ
– tan(90°- θ) cot θ
+ cos2 25° + cos2
65°)/3 tan 27° tan 63° = 2/3
(vii) cot θ tan (90° - θ)
– sec (90° - θ) cosec θ + √3
tan 12° tan 60° tan 78° = 2
Solution
(i) LHS = sin θ cos (90° - θ) + sin (90° - θ) cos θ
= sin θ sin θ + cos θ cos θ
= sin2
θ + cos2 θ
= 1
= RHS
Hence proved.
(ii) LHS = sin θ/cos
(90° - θ)
+ cos θ/(sin(90° - θ)
sin θ/sin θ + cos θ/cos
θ
= 1 + 1
= 2
= RHS
Hence proved.
(iii) LHS = sin θ cos(90° - θ) cos θ/sin(90°
- θ) + cos θ sin(90°- θ)
sin θ/cos (90° - θ)
= (sin θ sin θ cos θ)/cos θ
+ (cos θ cos θ sin θ)/sin
θ
= sin2 θ + cos2 θ
= 1
= RHS
Hence proved.
(iv) LHS = {(cos 90° - θ) sec(90° - θ) tan θ}/cosec(90°
- θ) sin(90° - θ)° cot(90° – θ) + tan(90° - θ)/cot θ
= (sin θ
cosec θ tan θ)/(sec θ cos θ tan θ) + cot θ /cot
θ
= 1 + 1
= 2
= RHS
Hence proved.
(v) LHS = cos (90° - θ)/(1 + sin(90° - θ) + 1 + sin(90° - θ)/cos(90° - θ)
= sin θ/(1 + cos θ) + (1 + cos θ)/sin θ
= sin2
θ + (1 + cos θ)2/(1 + cos θ) sin θ
= (sin2
θ + 1 + cos2 θ + 2 cos θ)/(1 + cos )sin θ
= (1 + 1 + 2 cos
θ)/(1 + cos θ) sin θ
= (2 + 2 cos θ)/(1
+ cos θ) sin θ
= 2(1 + cos θ)/(1
+ cos θ) sin θ
= 2.(1/sin θ)
= 2 cosec θ
= RHS
(vi) LHS = sec(90° - θ) cosec θ – tan(90° - θ) cot θ
+ cos2 25° + cos2 65°)/(3 tan 27°
tan 63°)
= cosec θ cosec θ -
cot θ cot θ + sin2 (90° - 25°) + cos2
65°]/3 tan 27° cot (90° - 63°)
= (cosec2 θ – cot2 θ + sin2
65° cos2 65°)/3 tan 27° cot 27°
= (1 + 1)/(3×tan 27°) ×
1/(tan 27°)
= 2/3
= RHS
(vii) LHS = cot θ tan (90°- θ) – sec(90° - θ) cosec θ + √3 tan 12°
tan 60° tan 78°
= cot θ cot θ –
cosec θ cosec θ + √3
tan 12° × √3 × cot (90°
- 78°)
= cot2 θ – cosec2 θ + 3 tan 12°
cot 12°
= - 1 + 3 × tan 12° ×
1/tan 12°
= - 1 + 3
= 2
= RHS
6. Without using trigonometric tables, prove that:
(i) tan 5° tan 25° tan 30° tan 65° tan 85° = 1
(ii) cot 12° cot 38° cot 52° cot 60° cot 78° = 1/√3
(iii) cos 15° cos 35° cosec 55° cos 60° cosec 75° = 1/2
(iv) cos 1° cos 2° cos 3°..... cos 180° = 0
(v) (sin 49°/cos 41°)2 + (cos 41°/sin 49°) = 2
Solution
(i) LHS = tan 5° tan 25° tan 30° tan 65° tan 85°
= tan (90° - 85°) tan(90° - 65°)× 1/√3 × 1/cot 60° 1/cot 85°
= cot 85° cot 65° 1/√3 1/cot 60°. 1/cot 85°
= 1/√3
= RHS
(ii) LHS = cot 12° cot 38° cot 52° cot 60° cot 78°
= tan (90° - 12°) × tan(90°-38°)×cot 52°× 1/√3 × cot 78°
= 1/√3 × tan 78°× an 52°×cot 52°×cot 78°
= 1/√3 × tan 78° × tan 52° × 1/tan 52° × 1/tan 78°
= 1/√3
= RHS
(iii) LHS = cos 15° cos 35° cosec 55° cos 60° cosec 75°
= cos (90° - 75°) cos (90° - 55°) 1/sin 55° × ½ × 1/sin 75°
= sin 75° sin 55°. 1/sin 55° × 1/2 × 1/sin 75°
= 1/2
= RHS
(iv) LHS = cos 1° cos 2° cos 3° .... cos 180°
= cos 1° × cos 2° × cos 3° × .....× cos 90° × ....× in cos 180°
= cos 1° × cos 2° × cos 3° × ......× 0 × ..... × cos 180°
= 0
= RHS
(v) LHS = (sin 49°/cos 41°)2 + (cos 41°/sin 49°)
= (cos(90° - 45°)/cos 41°)2 + (cos 41°/cos(90° - 49°)2
= (cos 41°/cos 41°)2 + (cos(41°/cos 41°)2
= 12 + 12
= 1 + 1
= 2
= RHS
Disclaimer: The RHS of (v) given in textbook is incorrect. There should be 2 instead 1.
The same has been corrected in the solution here.
7. Prove that:
(i) sin (70° + θ) – cos(20° - θ) = 0
(ii) tan (55° - θ) – cot (35° + θ) = 0
(iii) cosec (67° - θ) + sec (20° - θ) = 0
(iv) cosec (65° + θ) – sec (25°- θ) – tan(55° - θ) + cot (35° + θ) = 0
(v) sin (50° + θ) – cos (40° - θ) + tan 1° tan 10° tan 80° tan 89° = 1
Solution
(i) LHS = sin (70° + θ) – cos (20° - θ)
= sin {(90° - (20° - θ)} – cos (20° - θ)
= cos (20° - θ) – cos (20° - θ)
= 0
= RHS
(ii) LHS = tan(55° - θ) – cot(35° + θ)
= tan{90° - (35° - θ)} – cot θ(35° - θ)
= cot (35° - θ) – cot(35° - θ)
= 0
= RHS
(iii) LHS = cosec(67°- θ) – sec(23° - θ)
= cosec {90° - 23° - θ)} – sec (23°- θ)
= sec (20° - θ) – sec (23° - θ)
= 0
= RHS
(iv) LHS = cosec (65° - θ) – sec(25°- θ) – tan(55° - θ) + cot(35° + θ)
= cosec{90° - (25° - θ)} – sec(25° - θ) – tan(55° - θ) + cot{90° - (55° - θ)}
= sec(25° - θ) – sec(25° - θ) – tan(55° - θ) + tan(55° - θ)
= 0
= RHS
(v) LHS = sin(50° - θ) – cos (40° - θ) + tan 1° tan 10° tan 80° tan 89°
= sin{90° - (40° - θ)} – cos (40° - θ) + {tan 1° tan(90° - 1°)} {tan 10° tan(90° - 10)}
= cos (40° - θ) - cos (40° - θ) + (tan 1° cot 1°) (tan 10° cot 10°)
= 1(1/cot 1° × cot 1°)(tan 10° × 1/tan 10°)
= 1 × 1
= 1
= RHS
8. Express each of the following in terms of trigonometric ratios of lying between 0° and 45°.
(i) sin 67° + cos 45°
(ii) cot 65° + tan 49°
(iii) sec 78° + cosec 56°
(iv) cosec 54° + sin 72°
Solution
(i) sin 67° + cos 75°
= cos (90° - 67°) + sin (90° - 75°)
= cos 23° + sin 15°
(ii) cot 65° + tan 49°
= cos(90° - 65°) + cot(90° - 49°)
= cos 25° + cot 41°
(iii) sec 78° + cosec 56°
= sec (90° - 12°) + cosec (90° - 34°)
= cosec 12° + sec 34°
(iv) cosec 54° + sin 72°
= sec (90° - 54°) + cos(90° - 72°)
= sec 36° + cos 18°
9. If A, B, C are the angles of a ∆ABC, prove that tan (C + A)/2 = cot Ï€/2.
Solution
In ∆ABC,
A + B + C = 180°
⇒ A + C = 180° - B ...(i)
Now,
LHS = tan (C + A)/2
= tan (180° - θ)/2 [Using (i)]
= tan (90° - B/2)
= cot B/2
= RHS
10. If cos 2θ = sin 4θ and 2θ is acute, then find the value of θ.
Solution
We have:
cos 2θ = sin 4θ
⇒ sin (90° - 2θ) = sin 4θ
Comparing both sides, we get
90° - 2θ = 4θ
⇒ 2θ - 4θ = 90°
⇒ 6θ = 90°
⇒ θ = 90°/6
∴ θ = 15°
Hence, the value of θ is 15°
11. If sec 2A = cosec (A - 12°), where 2A is an acute angle, find the value A,
Solution
We have:
sec 2A = cosec (A - 42°)
⇒ cosec (90° - 2A) = cosec (A - 42°)
Comparing both sides, we get
90° - 2A = A - 42°
⇒ 2A + A = 90° + 42°
⇒ 3A = 132°
⇒ A = 132°/3
∴ A = 40°
Hence, the value of A is 44°.
12. If sin 3A = cos(A - 26°), where 3A is an acute angle, find the value of A.
Solution
sin 3A = cos (A - 26°)
⇒ cos (90° - 3A) = cos (A - 26°) [∵ sin θ = cos (90° - θ)]
⇒ 90° - 3A = A - 26°
⇒ 116° = 4A
⇒ A = 116°/4 = 29°
13. If tan 2A = cot (A - 12°), where 2A is an acute angle, find the value of A.
Solution
tan 2A = cot(A - 12°)
⇒ cot (90° - 2A) = cot (A - 12°) [∵ tan θ = (cot (90° - θ)]
⇒ (90° - 2A) = (A - 12°)
⇒ 102° = 3A
⇒ A = 102°/3
= 34°
14. If sec 4A = cosec (A - 15°), where 4A is an acute angle, find the value of A.
Solution
sec 4A = cosec (A - 15°)
⇒ cosec (90° - 4A) = cosec (A - 15°) [∵ secθ = cosec (90° - θ)]
⇒ (90° - 4A) = (A - 15°)
⇒ 105° = 5A
⇒ A = 105°/5°
= 21°
15. Without using trigonometric tables, evaluate the following:
Solution
2/3 cosec2 58° - 2/3 cot 58° tan 32° - 5/3 tan 13° tan 37° tan 45° tan 53° tan 77°
= 2/3 (cosec2 58° - cot 58° tan 32°) – 5/3 tan 13° tan(90° - 13°) tan 37° tan(90° - 37°) (tan 45°)
= 2/3{cosec2 58° - cot 58° tan (90° - 58°)} – 5/3 tan 13° cot 13° tan 37° cot 37° (1)
= 2/3(cosec2 58° - cot 58° tan 58°) - 5/3 tan 13° 1/tan 13° tan 37° 1/tan 37°
= 2/3(cosec2 58° - cot2 58°) – 5/3
= 2/3 – 5/3
= - 1
Hence proved.