RS Aggarwal Solutions Chapter 6 T-Ratios of Some Particular Angles Exercise 6 Class 10 Maths
Chapter Name | RS Aggarwal Chapter 6 T-Ratios of some Particular Angles |
Book Name | RS Aggarwal Mathematics for Class 10 |
Other Exercises |
|
Related Study | NCERT Solutions for Class 10 Maths |
Exercise 6 Solutions
1. Evaluate: sin 60° cos 30° + cos 60° sin 30°
Solution
On substituting the values of various T-ratios, we get:
sin 60° cos 30° + cos 60° sin 30°
= (√3/2×√3/2 + 12×12)
= (3/4 + 1/4)
= 4/4
= 1
2. Evaluate: cos 60° cos 30°– sin 60° sin 30°
Solution
On substituting the values of various T-ratios, we get:
cos 60° cos 30° − sin 60° sin 30°
= (1/2 × √3/2 − √3/2 × 1/2)
= (√3/4 − √3/4)
= 0
3. Evaluate: cos 45° cos 30° + sin 45° sin 30°
Solution
On substituting the values of various T-ratios, we get:
cos 45° cos 30° + sin 45° sin30°
= (1√2×√3/2 + 1/√2 × 1/2)
= (√3/2√2 + 1/2√2)
= (√3 + 1)/2√2)
4. Evaluate: sin 30°/cos 45° + cot 45°/sec 60° – sin 60°/tan 45° + cos 30°/sin 90°
Solution
sin 30°/cos 45° + cot 45°/sec 60° – sin 60°/tan 45° + cos 30°/sin 90°
= (1/2)/(1/√2) + 1/2 – (√3/2)/1 + (√3/2)/1
= √2/2 + 1/2 - √3/2 + √3/2
= (√2 + 1)/2
5. Evaluate: (5 cos2 60° + 4 sec2 30° – tan2 45°)/(sin2 30° + cos2 30°)
Solution
(5 cos2 60° + 4 sec2 30° – tan2 45°)/(sin2 30° + cos2 30°)
= [5(1/2)2 + 4(2/√3)2 – (1)2)]/[(1/2)2 + (√3/2)2]
= (5/4 + (4×4)/3 – 1)\(1/4 + 3/4)
= (5/4 + 16/3 – 1/1)/(4/4)
= [(15 + 64 – 12)/12]/(4/4)
= 67/12
6. Evaluate:
2 cos2 60° + 3 sin2 45°- 3 sin2 30° + 2 cos2 90°
Solution
On substituting the values of various T-ratios, we get:
2cos260° + 3 sin245°- 3sin230° + 2 cos2 90°
= 2×(1/2)2 + 3×(1/√2)2 - 3×(1/2)2 + 2×(0)2
= 2× 1/4 + 3× 1/2 – 3× 1/4 + 0
= (1/2 + 3/2 – 3/4)
= (2 + 6 – 3)/4
= 5/4
7. Evaluate:
cot2 30°- 2 cos2 30° – 3/4 sec245° + 1/4 cosec2 30°
Solution
On substituting the values of various T-ratios, we get:
cot2 30° - 2 cos2 30° - 3/4 sec2 45° + 1/4 cosec2 30°
= (√3)2– 2×(√3/2)2 ×(√2)2 + 1/4 ×(2)2
= 3 – 2× 3/4 – 3/4 ×2 + 1/4 ×4
= 3 – 3/2 – 3/2 + 1
= 4 - (3/2 + 3/2)
= 4 – 3
= 1
8. Evaluate:
(sin2 30° + 4 cot2 45°- sec2 60°) (cosec2 45° sec2 30°)
Solution
On substituting the values of various T-ratios, we get:
(sin2 30° + 4 cot2 45°- sec2 60°) (cosec2 45° sec2 30°)
= [(1/2)2 + 4×(1)2 − (2)2] [(√2)2(2√3)2]
= (1/4 + 4 − 4) (2× 4/3)
= 1/4 × 8/3 = 2/3
9. Evaluate: 4/cot2 30° + 1/sin2 30° - 2 cos245° – sin20°
Solution
On substituting the values of various T-ratios, we get:
4/cot2 30°– 1/sin2 30° 2 cos245° – sin20°
= 4/(√3)2 + 1/(1/2)2 – 2 × (1/√2)2 – (0)2
= 4/3 + 1/(1/4) – 2 × 1/2 - 0
= 4/3 + 4 – 1
= 4/3 + 3
= (4 + 9)/3
= 13/3
10. Show that:
(i) (1 – sin 60°)/cos 60° = (tan 60° – 1)/(tan 60° + 1)
(ii) (cos 30° + sin 60°)/(1 + sin 30° + cos 60°) = cos 30°
Solution
(i) LHS = (1 - sin 60°)/(cos 60°)
= (1 - √3/2)/1/2
= (2 - √3)/2/(1/2)
= (2 - √3)/2 ×2
= 2 - √3
RHS = (tan 60° – 1)/(tan 60° + 1)
= (√3 – 1)/(√3 + 1)
= (√3 – 1)/(√3 + 1) × (√3 – 1)/(√3 – 1)
= (√3 – 1)2/(√3)2 – 12)
= (3 + 1 - 2√3)/(3 – 1)
= (4 - 2√3)/2
= 2 - √3
Hence, LHS = RHS
∴ (1 – sin 60°)/(cos 60°) = (tan 60° – 1)/(tan 6° + 1)
(ii) LHS = (cos 30° + sin 60°)/(1 + sin 30° + cos 60°)
= (√3/2 + √3/2)/(1 + 1/2 + 1/2)
= [(√3 + √3)/2]/[(2 + 1 + 1)/2]
= √3/2
Also, RHS = cos 30° = √3/2
Hence, LHS = RHS
∴ cos 30° + sin 60°
1 + sin 30° + cos 60°
= cos 30°
11. Verify each of the following:
(i) sin 60°cos 30°– cos 60°sin 30°
(ii) cos 60°cos 30° + sin 60°sin 30°
(iii) 2 sin 30°cos 30°
(iv) 2 sin 45°cos 45°
Solution
(i) sin 60°cos 30° – cos 60°sin 30°
= (√3/2) × (√3/2) - (1/2) × (1/2) = 3/4 – 1/4 = 2/4 = 1/2
Also, sin 300 = 1/2
∴ sin 60°cos 30°– cos 60°sin 30° = sin 30°
(ii) cos 60°cos 30° + sin 60° sin 30°
= (1/2) × (√3/2) + (√3/2) × (1/2) = √3/4 + √3/4 = √3/2
Also, cos 30° = √3/2
∴ cos 60°cos 30° + sin 60°sin 30° = cos 30°
(iii) 2 sin 30°cos 30°
= 2× 1/2 ×√3/2 = √3/2
Also, sin 60° = √3/2
∴ 2 sin 30°cos 30° = sin 60°
(iv) 2 sin 45°cos 45°
= 2 × 1/√2 × 1/√2 = 1
Also, sin 90° = 1
∴ 2 sin 45° cos 45° = sin 90°
12. If A = 45°, verify that:
(i) sin 2A = 2 sin A cos A
(ii) cos 2A = 2 cos2 A – 1 = 1 – 2 sin2 A
Solution
A = 45°
2A = 2 × 45° = 90°
(i) sin 2A = sin 90° = 1
⇒ 2 sin A cos A = 2
⇒ 2 sin A cos A = 2 sin 45°cos 45°
= 2 × 1/√2 × 1/√2
= 1
∴ sin 2A = 2 sin A cos A
(ii) cos 2A = cos 90° = 0
⇒ 2 cos2A – 1 = 2 cos 245° – 1
= 2 × (1/√2)2 – 1
= 2 × 1/2 – 1
= 1 – 1
= 0
Now,
1 – 2 sin2 A
= 1 – 2 × (1/√2)2 – 1
= 1 – 2 × 1/2
= 1 – 1
= 0
∴ cos 2A = 2 cos2 A – 1 = 1 – 2 sin2 A
13. If A = 30°, verify that:
(i) sin 2A = 2 tan A/(1 + tan2 A)
(ii) cos 2A = (1 – tan2 A)/(1 + tan2 A)
(iii) tan 2A = 2 tan A/(1 – tan2 A)
Solution
A = 30°
⇒ 2A = 2 × 30° = 60°
(i) sin 2A = sin 60° = √3/2
2 tan A/(1 + tan2 A) = 2 tan 30°/(1 + tan2 30°)
⇒ 2 × (1/√3)/(1 + (1/√3)2 = (2/√3)/(1 + 1/3)
⇒ (2/√3)/(4/3) = (2/√3) × 3/4
= √3/2
∴ sin 2A = 2 tan A/(1 + tan2 A)
(ii) cos 2A = cos 60° = 1/2
(1 – tan2 A)/(1 + tan2 A) = (1 – tan2 30°)/(1 + tan2 30°)
= (1 – (1/√3)2/(1 + 1/√3)2
= (1 – 1/3)/(1 + 1/3)
= (2/3)/(4/3)
= (2/3) × 3/4
= 1/2
∴ cos 2A = (1 – tan2 A)/(1 + tan2 A)
(iii) tan 2A = tan 60° = √3
2 tan A/(1 – tan2 A) = (2 tan 30°)/(1 – tan2 30°)
= 2 × (1/√3)/(1− (1/√3)2)
= (2/√3)/(2/3)
= (2/√3) × 3/2
= √3
∴ tan 2A = 2 tan A/(1 – tan2 A)
14. If A = 60° and B = 30°, verify that:
(i) sin (A + B) = sin A cos B + cos A sin B
(ii) cos (A + B) = cos A cos B - sin A sin B
Solution
A = 60° and B = 30°
Now, A + B = 60° + 30° = 90°
Also, A – B = 60°– 30° = 30°
(i) sin (A + B) = sin 90° = 1
⇒ sin A cos B + cos A sin B = sin 60°cos 30° + cos 60° sin 30°
⇒ (√3/2 × √3/2 + 1/2 × 1/2) = (3/4 + 1/4) = 1
∴ sin (A + B) = sin A cos B + cos A sin B
(ii) cos (A + B) = cos 90° = 0
⇒ cos A cos B - sin A sin B = cos 60° cos 30° - sin 60° sin 30°
⇒ (1/2 × √3/2 − √3/2 × 12) = (√34−√34) = 0
∴ cos (A + B) = cos A cos B - sin A sin B
15. If A = 60° and B = 30°, verify that:
(i) sin (A – B) = sin A cos B – cos A sin B
(ii) cos (A – B) = cos A cos B + sin A sin B
(iii) tan (A – B) = (tan A – tan B)/(1 + tan A tan B)
Solution
(i) sin (A – B) = sin 30° = 1/2
⇒ sin A cos B – cos A sin B = sin 60°cos 30° – cos 60° sin 30°
⇒ (√3/2 × √3/2 – 1/2 × 1/2) = (3/4 – 1/4)) = 2/4 = 1/2
∴ sin (A – B) = sin A cos B – cos A sin B
(ii) cos (A – B) = cos 30° = √3/2
⇒ cos A cos B + sin A sin B = cos 60°cos 30° + sin 60°sin 30°
⇒ (1/2 × √3/2 + √3/2 × 1/2) = (√3/4 + √3/4) = 2 × √3/4 = √3/2
∴ cos (A – B) = cos A cos B + sin A sin B
(iii) tan (A – B) = tan 60° = 1/√3
⇒ (tan A – tan B)/(1 + tan A tan B)
⇒ (tan 60° - tan 30°)/(1 + tan 60° tan 30°) = (√3 – 1/√3)/(1 + √3 + 1/√3)
= 1/2 × (3 – 1)/√3
= 3/√3
∴ tan (A – B) = (tan A – tan B)/(1 + tan A tan B)
16. If A and B are acute angles such that tan A = 1/3, tan B = 1/2 and tan (A + B) = (tan A + tan B)/(1 – tan A tan B),
show that A + B = 45°.
Solution
Given,
tan A = 1/3 and tan B = 1/2
tan (A + B) = (tan A + tan B)/(1 – tan A tan B)
On substituting these values in RHS of the expression, we get:
(tan A + tan B)/(1 - tan A tan B)
= (1/3 + 1/2)/(1 – 1/3 × 1/3)
= (5/6)/(1 – 1/6)
= (5/6)/(5/6)
= 1
⇒ tan (A + B)
= 1
= tan 45 [∵ tan 45° = 1]
⇒ tan (A + B) = 1 = tan 45° [∵ tan 45° = 1]
∴ A + B = 45°
17. Using the formula, tan 2A = 2 tan A/(1 – tan2 A), find the value of tan 60°, it being given that tan 30° = 1/√3.
Solution
A = 30°
⇒ 2A = 2 × 30° = 60°
By substituting the value of the given T-ratio, we get:
tan 2A = (2 tan A)/(1 – tan2A)
⇒ tan 60° = (2 tan 30°)/(1 – tan2 30°) = 2 × (1/√3)
1− (1/√3)2 = (2√3)/(1 – 1/3)
= (2/√3)/(2/3)
= (2/√3) × 3/2
= √3
18. Using the formula, cos A = √(1+cos2A)/2 find the value of cos 30°, it being given that cos 60° = 1/2.
A = 30°
⇒ 2A = 2 × 30° = 60°
By substituting value of the given T-ratio, we get:
∴ cos A = √3/2
19. Using the formula, sin A = √(1-cos2A)/2 find the value of sin 30°, it being given that cos 60° = 1/2.
Solution
A = 30°
⇒ 2A = 2 × 30° = 60°
By substituting the value of the given T-ratio, we get:
∴ sin 30° = 1/2
20. In the adjoining figure, ∆ABC is a right-angled triangle in which ∠B = 90°, ∠30° and AC = 20 cm.
Find (i) BC, (ii) AB.
SolutionFrom the given right-angled triangle, we have:
BC/AC = sin 30°
⇒ BC = 20/2 = 10 cm
Also, AB/AC = cos 30°
⇒ AB/20 = √3/2
⇒ AB = (20 × √3/2)
= 10√3 cm
∴ BC = 10 cm and AB = 10√3 cm
21. In the adjoining figure, ∆ABC is right-angled at B ∠A = 30°. If BC = 6 cm, find
(i) BC,
(ii) AB
Solution
From the given right-angled triangle, we have:
⇒ 6/AB = 1/√3
⇒ AB = 6√3 cm
Also, BC/AC = sin 30°
⇒ 6/AC = 1/2
⇒ AC = (2 × 6) = 12 cm
∴ AB = 6√3 cm and AC = 12 cm
22. In the adjoining figure, ∆ABC is right-angled at B and ∠A = 45°. If AC = 3√2cm, find
(i) BC
(ii) AB
Solution
From the right-angled ∆ABC, we have:
BC/AC = sin 45°
⇒ BC/3√2 = 1/√2
⇒ BC = 3 cm
Also, AB/AC = cos 45°
⇒ AB/3√2 = 1/√2
⇒ AB = 3 cm
∴ BC = 3 cm and AB = 3 cm
23. If sin (A + B) = 1 and cos (A – B) = 1, 0° ≤ (A + B) ≤ 90° and A > B, then find A and B.
Solution
Here, sin (A + B) = 1
⇒ sin (A + B) = 90° [∵ sin 90° = 1]
⇒ (A + B) = 90° ...(i)
Also, cos (A – B) = 1
⇒ cos (A – B) = 0° [∵ cos 0° = 1]
⇒ A – B = 0° ...(ii)
Solving (i) and (ii), we get:
A = 45° and B = 45°
24. If sin (A – B) = 1/2 and cos (A + B) = 1/2, 0° ≤ (A + B) ≤ 900and A > B, then find A and B.
Solution
Here, sin (A – B) = 1/2
⇒ sin (A – B) = 30° [∵ sin 30° = 1/2]
⇒ (A – B) = 30° ….(i)
Also, cos (A + B) = 1/2
⇒ cos (A + B) = cos 60° [∵ cos 60° = 1/2]
⇒ A + B = 60° ….(ii)
Solving (i) and (ii), we get:
A = 45° and B = 15°
25. If tan (A – B) = 1/√3 and tan (A + B) = √3, 0° ≤ (A + B) ≤ 90° and A > B, then find A and B.
Solution
Here, tan (A – B) = 1/√3
⇒ tan (A – B) = tan 30° [∵ tan 30° = 1/√3]
⇒ (A – B) = 30° ….(i)
Also, tan (A + B) = √3
⇒ tan (A + B) = tan 60° [∵ tan 60° = √3]
⇒ A + B = 60° ...(ii)
Solving (i) and (ii), we get:
A = 45° and B = 15°
26. If 3x = cosec θ and 3/x = cot θ find the value of 3(x2 – 1/x2)
Solution
3(x2 – 1/x2)
= 9/3(x2 – 1/x2)
= 1/3(9x2 – 9/x2)
= 1/3[(3x2) – (3/x)2]
= 1/3[(cosec θ)2 – (cot θ)2]
= 1/3(cosec2 θ – cot2 θ)
= 1/3(1)
= 1/3
27. If sin (A + B) = sin A cos B + cos A sin B and cos (A – B) = cos A cos B + sin A sin B
(i) sin (75°)
(ii) cos (15°)
Solution
Let A = 45° and B = 30°
(i) As, sin(A + B) = sin A cos B + cos A sin B
⇒ sin (45° + 30°) = sin 45° cos 30° + cos 45° sin 30°
⇒ sin (75°) = 1√2 × √3/2 + 1/√2 × 1/2
⇒ sin (75°) = √3/2√2 + 1/2√2
∴ sin (75°) = (√3 + 1)/2√2
(ii) As, cos (A – B) = cos A cos B + sin A sin B
⇒ cos (45°– 30°) = cos 45°cos 30° + sin 45° sin 30°
⇒ cos (15°) = 1/√2 × √3/2 + 1/√2 × 1/2
⇒ cos (15°) = √3/(2√2) + 1/(2√2)
∴ cos (15°) = (√3 + 1)/2√2
Disclaimer: cos 15° can also be written by taking A = 60° and B = 45°