RS Aggarwal Solutions Chapter 10 Quadratic Equation Exercise 10B Class 10 Maths
Chapter Name | RS Aggarwal Chapter 10 Quadratic Equation |
Book Name | RS Aggarwal Mathematics for Class 10 |
Other Exercises |
|
Related Study | NCERT Solutions for Class 10 Maths |
Exercise 10B Solutions
1. x2 – 6x + 3 = 0
Solution
x2 – 6x + 3 = 0
⇒ x2 – 6x + 3 = 0
⇒ x2 – 6x = - 3
⇒ x2 – 2 × x × 3 + 32 = -3 + 32 (Adding 32 on both sides)
⇒ (x – 3)2 = -3 + 9 = 6
⇒ x – 3 = ±√6 (Taking square root on the both sides)
⇒ x – 3 = √6 or x – 3 = -√6
⇒ x = 3 + √6 or x = 3 - √6
Hence, 3 + √6 and 3 - √6 are the roots of the given equation.
2. x2 – 4x + 1 = 0
Solution
x2 – 4x + 1 = 0
⇒ x2 – 4x = -1
⇒ x2 – 2 × x × 2 + 22 = -1 + 22 (Adding 22 on both sides)
⇒ (x – 2)2 = -1 + 4 = 3
⇒ x – 2 = ±√3 (Taking square root on both sides)
⇒ x – 2 = √3 or x – 2 = -√3
⇒ x = 2 + √3 or x = 2 - √3
Hence, 2 + √3 and 2 - √3 are the roots of the given equation.
3. x2 + 8x – 2 = 0
Solution
x2 + 8x – 2 = 0
⇒ x2 + 8x = 2
⇒ x2 + 2 × x × 4 + 42 = 2 + 42 (Adding 42 on both sides)
⇒ (x + 4)2 = 2 + 16 = 18
⇒ x + 4 = ±√18 = ±3√2 (Taking square roots on the both sides)
⇒ x + 4 = 3√2 or x + 4 = -3√2
⇒ x = (-4 + 3√2) and x = (-4 - 3√2)
Hence, (- 4 + 3√2) and (-4 - 3√2) are the roots of the given equation.
4. 4x2 + 4√3x + 3 = 0
Solution
4x2 + 4√3x + 3 = 0
⇒ 4x2 + 4√3x = -3
⇒ (2x)2 + 2 × 2x × √3 + (√3)2
= - 3 + (√3)2 [Adding (√3)2 on both sides]
⇒ (2x + √3)2 = - 3 + 3 = 0
⇒ 2x + √3 = 0
⇒ x = -√3/2
Hence, -√3/2 is the repeated root of the given equation.
5. 2x2 + 5x – 3 = 0
Solution
2x2 + 5x – 3 = 0
⇒ 4x2 + 10x – 6 = 0 (Multiplying both sides by 2)
⇒ 4x2 + 10x = 6
⇒ (2x2) + 2 × 2x × 5/2 + (5/2)2 = 6 + (5/2)2 [Adding (5/2)2 on both sides]
⇒ (2x + 5/2)2 = 6 + 25/4 = (24 + 25)/4 = 49/4 = (7/2)2
⇒ 2x + 5/2 = ± 7/2 (Taking square root on the both sides)
⇒ 2x + 5/2 = 7/2 or 2x + 5/2 = -(7/2)
⇒ 2x = 7/2 – 5/2 = 2/3 = 1 or 2x = -7/5 – 5/2
= - (12/2)
= -6
x = 1/2 or x = -3
Hence, 1/2 or x = -3 are the roots of the given equation.
6. 3x2 – x – 2 = 0
Solution
3x2 – x – 2 = 0
⇒ 9x2 – 3x – 6 = 0 (Multiplying both sides by 3)
⇒ 9x2 – 3x = 6
⇒ (3x)2 – 2 × 3x × 1/2 + (1/2)2
= 6 + (1/2)2 [Adding (1/2)2 on both sides]
⇒ (3x – 1/2)2 = 6 + 1/4 = 25/14 = (5/2)2
⇒ 3x – 1/2 = ± 5/2 (Taking square root on both sides)
⇒ 3x – 1/2 = 5/2 or 3x – 1/2 = -(5/2)
⇒ 3x = 5/2 + 1/2 = 6/2 = 3 or 3x = -5/2 + 1/2 = -(4/2) = -2
⇒ x = 1 or x = -(2/3)
Hence, 1 and –(2/3) are the roots of the given equation.
7. 8x2 - 14x – 15 = 0
Solution
8x2 – 14x – 15 = 0
⇒ 16x2 – 28x – 30 = 0 (Multiplying both sides by 2)
⇒ 16x2 – 28x = 30
⇒ (4x)2 – 2 × 4x × 7/2 + (7/2)2 = 30 + (7/2)2 [Adding (7/2)2 on both sides]
⇒ (4x – 7/2)2 = 30 + 49/4 = 169/4 = (13/2)2
⇒ 4x – 7/2 = ± 13/2 (Taking square root on both sides)
⇒ 4x – 7/2 = 13/2 or 4x – 7/2 = 13/2
⇒ 4x = 13/2 + 7/2 = 20/2 = 10 or 4x = -13/2 + 7/2 = -6/2 = -3
⇒ x = 5/2 or x = -3/4
Hence, 5/2 and -3/4 are the roots of the given equation.
8. 7x2 + 3x – 4 = 0
Solution
7x2 + 3x – 4 = 0
⇒ 49x2 + 21x – 28 = 0 (Multiplying both sides by 7)
⇒ 49x2 + 21x = 28
⇒ (7x)2 + 2 × 7x × 3/2 + (3/2)2 = 28 + (3/2)2 [Adding (3/2)2 on both sides]
⇒ (7x + 3/2)2 = 28 + 9/4 = 121/4 = (11/2)2
⇒ 7x + 3/2 = ± 11/2 (Taking square root on both sides)
⇒ 7x + 3/2 = 11/2 or 7x + 3/2 = -11/2
⇒ 7x = 11/2 – 3/2 = 8/2 = 4 or 7x = -11/2 – 3/2 = -14/2 = - 7
⇒ x = 4/7 or x = -1
Hence, 4/7 and -1 are the roots of the given equation.
9. 3x2 – 2x – 1 = 0
Solution
3x2 – 2x – 1 = 0
⇒ 9x2 – 6x – 3 = 0 (Multiplying both sides by 3)
⇒ 9x2 – 6x = 3
⇒ (3x)2 – 2 × 3x × 1 + 12 = 3 + 12 [Adding 12 on both sides]
⇒ (3x – 1)2 = 3 + 1 = 4 = (2)2
⇒ 3x – 1 = ± 2 (Taking square root on both sides)
⇒ 3x – 1 = 2 or 3x – 1 = -2
⇒ 3x = 3 or 3x = -1
⇒ x = 1 or x = -1/3
Hence, 1 and – 1/3 are the roots of the given equation.
10. 5x2 – 6x – 2 = 0
Solution
5x2 – 6x – 2 = 0
⇒ 25x2 – 30x -10 = 0 (Multiplying both sides by 5)
⇒ 25x2 – 30x = 10
⇒ (5x)2 – 2 × 5x × 3 + 32 = 10 + 32 (Adding 32 on both sides)
⇒ (5x – 3)2 = 10 + 9 – 19
Solution
2/x2 – 5/x + 2 = 0
⇒ (2 – 5x + 2x2)/x2
⇒ 2x2 – 5x + 2 = 0
⇒ 4x2 – 10x + 4 = 0 (Multiplying both sides by 2)
⇒ 4x2 – 10x = -4
⇒ (2x)2 – 2 × 2x × 5/2 + (5/2)2 = - 4 + (5/2)2 [Adding (5/2)2 on both sides]
⇒ (2x – 5/2)2 = - 4 + 25/4 = 9/4 = (3/2)2
⇒ 2x – 5/2 = ± 3/2 (Taking square root on both sides)
⇒ 2x – 5/2 = 3/2 or 2x – 5/2 = -3/2
⇒ 2x = 3/2 + 5/2 = 8/2 = 4 or 2x = -3/2 + 5/2 = 2/2 = 1
⇒ x = 2 or x = 1/2
Hence, 2 and 1/2 are the roots of the given equation.
12. 4x2 + 4bx – (a2 – b2) = 0
Solution
4x2 + 4bx – (a2 – b2) = 0
⇒ 4x2 + 4bx = a2 – b2
⇒ (2x)2 + 2 × 2x × b + b2
= a2 – b2 + b2 (Adding b2 on both sides)
⇒ (2x + b)2 = a2
⇒ 2x + b = ±a (Taking square root on both sides)
⇒ 2x+ b = a or 2x + b = -a
⇒ 2x = a – b or 2x = - a – b
⇒ x = (a – b)/2 or x = -(a + b)/2
Hence, (a – b)/2 and –(a + b)/2 are the roots of the given equation.
13. x2 – (√2 + 1)x + √2 = 0
Solution
x2 – (√2 + 1)x + √2 = 0
⇒ x2 – (√2 + 1)x = -√2
⇒ x2 – 2 × x × (√2 + 1)/2 + ((√2 + 1)/2)2 = -√2 + ((√2 + 1)/2)2
[Adding ((√2 + 1)/2)2 on both sides]
⇒ [x – (√2 + 1)/2)2] = (-4√2 + 2 + 1 + 2√2)/4
= (2 - 2√2 + 1)/4
= ((√2 – 1)/2)2
⇒ x – (√2 + 1)/2 = ±(√2 – 1)/2 (Taking square root on both sides)
⇒ x – (√2 + 1)/2 + (√2 – 1)/2 or x – (√2 + 1)/2 = -(√2 – 1)/2
⇒ x = (√2 + 1)/2 + (√2 – 1)/2 or x = (√2 + 1)/2 – (√2 – 1)/2
⇒ x = (2√2)/2 = √2 or x = 2/2 = 1
Hence, √2 and 1 are the roots of the given equation.
14. √2x2 – 3x - 2√2 = 0
Solution
√2x2 – 3x - 2√2 = 0
⇒ 2x2 - 3√2x – 4 = 0 (Multiplying both sides by √2)
⇒ 2x2 - 3√2x = 4
⇒ (√2x)2 – 2 × √2x × 3/2 + (3/2)2 = 4 + (3/2)2 [Adding (3/2)2 on both sides]
⇒ (√2x – 3/2)2 = 4 + 9/4 = 25/4 = (5/2)2
⇒ √2x – 3/2 = ± 5/2 (Taking square root on both sides)
⇒ √2x – 3/2 = 5/2 or √2x – 3/2 = -5/2
⇒ √2x = 5/2 + 3/2 = 8/2 = 4 or √2x = -5/2 + 3/2 = -2/2 = -1
⇒ x = 4/√2 = 2√2 or x = -1/√2 = -√2/2 b
Hence, 2√2 and -√2/2 are the roots of the given equation.
15. √3x2 + 10x + 7√3 = 0
Solution
√3x2 + 10x + 7√3 = 0
⇒ 3x2 + 10√3x + 21 = 0 (Multiplying both sides by √3)
⇒ 3x2 + 10√3x = - 21
⇒ (√3x)2 + 2 × √3x × 5 + 52 = -21 + 52 (Adding 52 on both sides)
⇒ (√3x + 5)2 = 21 + 25 = 4 = 22
⇒ √3x + 5 = ±2 (Taking square root on both sides)
⇒ √3x + 5 = 2 or √3x + 5 = - 2
⇒ √3x = -3 or √3x = - 7
⇒ x = -3/√3 = - √3 or x = -7/√3 = -7√3/3
Hence, -√3 and –(7√3)/3 are the roots of the given equation.
16. By using the method of completing the square, show that the equation 2x2 + x + 4 = 0 has no real roots.
Solution
2x2 + x + 4 = 0
⇒ 4x2 + 2x + 8 = 0 (Multiplying both sides by 2)
⇒ 4x2 + 2x = - 8
⇒ (2x)2 + 2 × 2x × (1/2)2 = - 8 + (1/2)2 [Adding (1/2)2 on both sides]
⇒ (2x + 1/2)2 = (- 8 + 1/4) = - (31/4) < 0
But, (2x + 1/2)2 cannot be negative for any real value of x.
So, there is no real value of x satisfying the given equation.
Hence, the given equation has no real roots.