Frank Solutions for Chapter 26 Trigonometric Ratios Class 9 Mathematics ICSE
Exercise 26.1
1. In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric ratios.
(i) sin A = 12/13
(ii) cos B = 4/5
(iii) cot A = 1/11
(iv) cosec C = 15/11
(v) tan C = 5/12
(vi) sin B = √3/2
(vii) cos A = 7/25
(viii) tan B = 8/15
(ix) sec B = 15/12
(x) cosec C = √10
Answer
(i) Sin A = 12/13
sin A = Perpendicular/Hypotenuse
⇒ sin A = 12/13
By Pythagoras theorem,
We have,
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ Base = √(Hypotenuse)2 – (Perpendicular)2
⇒ Base = √(13)2 – (12)2
⇒ Base = √169 – 144
⇒ Base = √25
We get,
Base = 5
cos A = Base/Hypotenuse
⇒ cos A = 5/13
sec A = (1/cos A)
⇒ sec A = 13/5
cot A = (1/tan A)
⇒ cot A = 5/12
cosec A = (1/sin A)
⇒ cosec A = 13/12
(ii) cos B = 4/5
⇒ cos B = Base/Hypotenuse
⇒ cos B = 4/5
By Pythagoras theorem,
We have,
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ Perpendicular = √(Hypotenuse)2 – (Base)2
⇒ Perpendicular = √(5)2 – (4)2
⇒ Perpendicular = √25 – 16
⇒ Perpendicular = √9
We get,
Perpendicular = 3
sin B = Perpendicular/Hypotenuse
⇒ sin B = 3/5
tan B = Perpendicular/Base
⇒ tan B = 3/4
sec B = (1/cos B)
⇒ sec B = 5/4
cot B = (1/tan B)
⇒ cot B = 4/3
cosec B = (1/sin B)
⇒ cosec B = 5/3
(iii) cot A = 1/11
cot A = (1/tan A)
cot A = Base/Perpendicular
By Pythagoras theorem,
We have,
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
(Hypotenuse) = √(Perpendicular)2 + (Base)2
⇒ (Hypotenuse) = √(11)2 + (1)2
⇒ (Hypotenuse) = √(121 + 1)
⇒ (Hypotenuse) = √122
cos A = Base/Hypotenuse
⇒ cos A = 1/√122
tan A = Perpendicular/Base
⇒ tan A = 11
sec A = (1/cos A)
⇒ sec A = √122
sin A = Perpendicular/Hypotenuse
⇒ sin A = 11/√122
cosec A = (1/sin A)
⇒ cosec A = √122/11
(iv) cosec C = 15/11
⇒ cosec C = (1/sin C)
⇒ cosec C = (Hypotenuse/Perpendicular)
⇒ cosec C = 15/11
By Pythagoras theorem,
We have,
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
Base = √(Hypotenuse)2 – (Perpendicular)2
⇒ Base = √(15)2 – (11)2
⇒ Base = √225 – 121
⇒ Base = √104
sin C = Perpendicular/Hypotenuse
⇒ sin C = 11/15
cos C = Base/Hypotenuse
⇒ cos C = √104/15
tan C = Perpendicular/Base
⇒ tan C = 11/√104
sec C = (1/cos C)
⇒ sec C = 15/√104
cot C = (1/tan C)
⇒ cot C = √104/11
(v) tan C = 5/12
tan C = Perpendicular/Base
tan C = 5/12
By Pythagoras theorem,
We have,
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ (Hypotenuse) = √(Perpendicular)2 + (Base)2
⇒ (Hypotenuse) = √(5)2 + (12)2
⇒ (Hypotenuse) = √25 + 144
⇒ (Hypotenuse) = √169
We get,
(Hypotenuse) = 13
cot C = (1/tan C)
⇒ cot C = 12/5
sin C = Perpendicular/Hypotenuse
⇒ sin C = 5/13
cos C = Base/Hypotenuse
⇒ cos C = 12/13
sec C = (1/cos C)
⇒ sec C = 13/12
cosec C = (1/sin C)
⇒ cosec C = 13/5
(vi) sin B = √3/2
sin B = Perpendicular/Hypotenuse
⇒ sin B = √3/2
By Pythagoras theorem,
We have,
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ Base = √(Hypotenuse)2 – (Perpendicular)2
Base = √(2)2 – (√3)2
⇒ Base = √4 – 3
⇒ Base = √1
We get,
Base = 1
cos B = Base/Hypotenuse
⇒ cos B = 1/2
tan B = Perpendicular/Base
⇒ tan B = √3/1
⇒ tan B = √3
sec B = (1/Cos B)
⇒ sec B = 2
cot B = (1/tan B)
⇒ cot B = 1/√3
cosec B = 1/Sin A
⇒ cosec B = 2/√3
(vii) cos A = 7/25
cos A = Base/Hypotenuse
⇒ cos A = 7/25
By Pythagoras theorem,
We have,
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ Perpendicular = √(Hypotenuse)2 – (Base)2
⇒ Perpendicular = √(25)2 – (7)2
⇒ Perpendicular = √625 – 49
⇒ Perpendicular = √576
We get,
Perpendicular = 24
sin A = Perpendicular/Hypotenuse
⇒ sin A = 24/25
tan A = Perpendicular/Base
⇒ tan A = 24/7
sec A = (1/cos A)
⇒ sec A = 25/7
cot A = (1/tan A)
⇒ cot A = 7/24
cosec A = (1/sin A)
⇒ cosec A = 25/24
(viii) tan B = 8/15
tan B = Perpendicular/Base
tan B = 8/15
By Pythagoras theorem,
We have,
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ (Hypotenuse) = √(Perpendicular)2 + (Base)2
⇒ (Hypotenuse) = √(8)2 + (15)2
⇒ (Hypotenuse) = √64 + 225
⇒ (Hypotenuse) = √289
We get,
Hypotenuse = 17
⇒ cot B = 1/tan B
⇒ cot B = 15/8
sin B = Perpendicular/Hypotenuse
⇒ sin B = 8/17
cos B = Base/Hypotenuse
⇒ cos B = 15/17
sec B = (1/cos B)
⇒ sec B = 17/15
cosec B = (1/sin B)
⇒ cosec B = 17/8
(ix) sec B = 15/12
sec B = (1/cos B)
⇒ sec B = Hypotenuse/Base
⇒ sec B = 15/12
By Pythagoras theorem,
We have,
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ Perpendicular = √(Hypotenuse)2 – (Base)2
⇒ Perpendicular = √(15)2 – (12)2
⇒ Perpendicular = √225 – 144
⇒ Perpendicular = √81
We get,
Perpendicular = 9
sin B = Perpendicular/Hypotenuse
⇒ sin B = 9/15
tan B = Perpendicular/Base
⇒ tan B = 9/12
cot B = (1/tan B)
⇒ cot B = 12/9
cosec B = (1/sin B)
⇒ cosec B = 15/9
cos B = Base/Hypotenuse
⇒ cos B = 12/15
(x) cosec C = √10
⇒ cosec C = (1/sin C)
cosec C = Hypotenuse/Perpendicular
⇒ cosec C = √10/1
By Pythagoras theorem,
We have,
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
Base = √(Hypotenuse)2 – (Perpendicular)2
⇒ Base = √(√10)2 – (1)2
⇒ Base = √10 – 1
⇒ Base = √9
We get,
Base = 3
sin C = Perpendicular/Hypotenuse
⇒ sin C = 1/√10
cos C = Base/Hypotenuse
⇒ cos C = 3/√10
tan C = Perpendicular/Base
⇒ tan C = 1/3
sec C = (1/cos C)
⇒ sec C = √10/3
cot C = (1/tan C)
⇒ cot C = 3
2. In △ABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find:
(i) sin B
(ii) cos C
(iii) tan B
Answer
In △ABC,BC2 = AB2 + AC2
⇒ BC = √AB2 + AC2
⇒ BC = √52 + 122
⇒ BC = √25 + 144
⇒ BC = √169
We get,
BC = 13
AC = 12 units
BC = 13 units
AB = 5 units
(i) sin B = Perpendicular/Hypotenuse
sin B = AC/BC
⇒ sin B = 12/13
(ii) cos C = Base/Hypotenuse
⇒ cos C = AC/BC
⇒ cos C = 12/13
(iii) tan B = Perpendicular/Base
⇒ tan B = AC/AB
⇒ tan B = 12/5
3. In △ABC, ∠B = 90°. If AB = 12 units and BC = 5 units, find:
(i) sin A
(ii) tan A
(iii) cos C
(iv) cot C
Answer
In △ABC,AC2 = AB2 + BC2
⇒ AC = √122 + 52
⇒ AC = √144 + 25
⇒ AC = √169
We get,
AC = 13
AB = 12 units
BC = 5 units
AC = 13 units
(i) sin A = Perpendicular/Hypotenuse
⇒ sin A = BC/AC
⇒ sin A = 5/13
(ii) tan A = Perpendicular/Base
⇒ tan A = BC/AB
⇒ tan A = 5/12
(iii) cos C = Base/Hypotenuse
⇒ cos C = BC/AC
⇒ cos C = 5/13
(iv) cot C = Base/Perpendicular
⇒ cot C = BC/AB
⇒ cot C = 5/12
4. If sin A = 3/5, find cos A and tan A.
Answer
Given
sin A = 3/5
sin A = Perpendicular/Hypotenuse
By Pythagoras theorem,
We have,
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ (Base)2 = (Hypotenuse)2 – (Perpendicular)2
⇒ Base = √(Hypotenuse)2 – (Perpendicular)2
⇒ Base = √52 – 32
⇒ Base = √25 – 9
⇒ Base = √16
We get,
Base = 4
cos A = Base/Hypotenuse
⇒ cos A = 4/5
tan A = Perpendicular/Base
⇒ tan A = 3/4
5. If sin θ = 8/17, find the other five trigonometric ratios.
Answer
Given
sin θ = 8/17
⇒ sin θ = Perpendicular/Hypotenuse
Base = √(Hypotenuse)2 – (Perpendicular)2
⇒ Base = √172 – 82
⇒ Base = √289 – 64
⇒ Base = √225
We get,
Base = 15
cos θ = Base/Hypotenuse
⇒ cos θ = 15/17
tan θ = Perpendicular/Base
⇒ tan θ = 8/15
cosec θ = 1/sin θ
⇒ cosec θ = 17/8
sec θ = 1/cos θ
⇒ sec θ = 17/15
cot θ = 1/tan θ
⇒ cot θ = 15/8
6. If tan A = 0.75, find the other trigonometric ratios for A.
Answer
Given,
tan A = 0.75
⇒ tan A = 75/100
We get,
tan A = 3/4
tan A = Perpendicular/Base
By Pythagoras theorem,
We have,
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ Hypotenuse = √(Perpendicular)2 + (Base)2
⇒ Hypotenuse = √32 + 42
⇒ Hypotenuse = √9 + 16
⇒ Hypotenuse = √25
We get,
Hypotenuse = 5
sin A = Perpendicular/Hypotenuse
⇒ sin A = 3/5
⇒ sin A = 0.6
cos A = Base/Hypotenuse
⇒ cos A = 4/5
⇒ cos A = 0.8
cosec A = 1/sin A
⇒ cosec A = 5/3
⇒ cosec A = 1.66
sec A = 1/cos A
⇒ sec A = 5/4
⇒ sec A = 1.25
cot A = 1/tan A
⇒ cot A = 4/3
⇒ cot A = 1.33
7. If sin A = 0.8, find the other trigonometric ratios for A.
Answer
Given
sin A = 0.8
⇒ sin A = 8/10
⇒ sin A = 4/5
sin A = Perpendicular/Hypotenuse
By Pythagoras theorem,
We have
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ Base =√(Hypotenuse)2 – (Perpendicular)2
⇒ Base = √52 – 42
⇒ Base = √25 – 16
⇒ Base = √9
We get,
Base = 3
cos A = Base/Hypotenuse
⇒ cos A = 3/5
⇒ cos A = 0.6
tan A = Perpendicular/Base
⇒ tan A = 4/3
⇒ tan A = 1.33
cosec A = 1/sin A
⇒ cosec A = 5/4
⇒ cosec A = 1.25
sec A = 1/cos A
⇒ sec A = 5/3
⇒ sec A = 1.66
cot A = 1/tan A
⇒ cot A = 3/4
⇒ cot A = 0.75
8. If 8 tan θ = 15, find
(i) sin θ
(ii) cot θ
(iii) sin2 θ – cot2 θ
Answer
Given
8 tanθ = 15
⇒ tan θ = 15/8
⇒ tan θ = Perpendicular/Base
By Pythagoras theorem,
We have,
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ Hypotenuse = √(Perpendicular)2 + (Base)2
⇒ Hypotenuse = √152 + 82
⇒ Hypotenuse = √225 + 64
⇒ Hypotenuse = √289
We get,
Hypotenuse = 17
(i) sin θ = Perpendicular/Hypotenuse
⇒ sin θ = 15/17
(ii) cot θ = 1/tan θ
⇒ cot θ = 8/15
(iii) sin2 θ – cot2 θ = (sin θ + cot θ) (sin θ – cot θ)
⇒ sin2 θ – cot2 θ = {(15/17) + (8/15)} {(15/17) – (8/15)}
⇒ sin2 θ – cot2 θ = {(225 + 136)/255}{(225 – 136)/255}
⇒ sin2 θ – cot2 θ = (361/255) (89/255)
On calculation, we get,
sin2 θ – cot2 θ = 32129/65025
9. In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of
(a) cos C
(b) cosec C
(c) cos2 C + cosec2 C
Answer
△ABC is an isosceles right-angled triangleTherefore,
AC2 = AB2 + BC2
⇒ AC2 = 62 + 62
⇒ AC2 = 36 + 36
⇒ AC2 = 72
We get,
⇒ AC = 6√2 cm
(a) cos C = BC/AC
⇒ cos C = 6/6√2
⇒ cos C = 1/√2
(b) cosec C = AC/AB
⇒ cosec C = 6√2/6
⇒ cosec C = √2
(c) cos2 C + cosec2 C = (1/√2)2 + (√2)2
⇒ cos2 C + cosec2 C = (1/2) + 2
On further calculation, we get,
cos2 C + cosec2 C = 5/2
10. In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of
(a) sin x
(b) cos y
(c) tan x. cot y
(d) (1/sin2 x) – (1/ tan2 x)
AnswerSince, AD is the median on BC,We have,
BD = DC = (1/2)× BC
= (1/2) ×12
= 6 cm
△ADB is a right angled triangle
Therefore,
AB2 = AD2 + BD2
⇒ AB2 = 82 + 62
⇒ AB2 = 64 + 36
⇒ AB2 = 100
We get,
AB = 10 cm
△ADC is a right angled triangle
Therefore,
AC2 = AD2 + DC2
⇒ AC2 = 82 + 62
⇒ AC2 = 64 + 36
⇒ AC2 = 100
We get,
AC = 10 cm
(a) sin x = AD/AB
⇒ sin x = 8/10
⇒ sin x = 4/5
(b) cos y = AD/AC
⇒ cos y = 8/10
⇒ cos y = 4/5
(c) cos x = BD/AB
⇒ cos x = 6/10
⇒ cos x = 3/5
And,
sin y = DC/AC
⇒ sin y = 6/10
⇒ sin y = 3/5
Hence,
tan x = sin x/cos x
⇒ tan x = (4/5)/(3/5)
We get,
tan x = 4/3
⇒ cot y = cos y/sin y
⇒ cot y = (4/5)/(3/5)
We get,
cot y = 4/3
Therefore,
tan x. cot y = (4/3) ×(4/3)
⇒ tan x . cot y = 16/9
(d) (1/sin2 x) – (1/tan2 x) = 1/(4/5)2 – 1/(4/3)2
On calculating further, we get,
(1/sin2 x ) – (1/tan2 x) = (25/16) – (9/16)
⇒ (1/sin2 x) – (1/ tan2 x) = (16/16)
⇒ (1/sin2 x) – (1/tan2 x) = 1
11. In a right- angled triangle PQR, ∠PQR = 90°, QS ⊥PR and tan R = (5/12), find the value of
(a) sin ∠PQS
(b) tan ∠SQR
Answer
tan R = 5/12PQ/QR = 5/12
Hence,
PQ = 5 and QR = 12
In right-angled △PQR,
PR2 = PQ2 + QR2
⇒ PR2 = 52 + 122
⇒ PR2 = 25 + 144
⇒ PR2 = 169
⇒ PR = √169
We get,
PR = 13
(a) ∠PQS + ∠P = 90° and ∠P + ∠R = 90°
Hence,
∠PQS + ∠P = ∠P + ∠R
⇒ ∠PQS = ∠R
Therefore,
sin ∠PQS = sin R = PQ/PR = 5/13
(b) ∠SQR + ∠R = 90° and ∠R + ∠P = 90°
Hence,
∠SQR + ∠R = ∠R + ∠P
⇒ ∠SQR = ∠P
Therefore,
tan ∠SQR = tan P = QR/PQ = 12/5
12. In the given figure, △ABC is right angled at B. AD divides BC in the ratio 1: 2.
Find
(i) tan ∠BAC/tan ∠BAD
(ii) cot ∠BAC/cot ∠BAD
AnswerGiven
△ABC is right angled at B
BD: DC = 1: 2 as AD divides BC in the ratio 1: 2
i.e BD = x, DC = 2x
Hence,
BC = 3x
(i) tan ∠BAC/tan ∠BAD = (BC/AB)/(BD/AB)
⇒ tan ∠BAC/tan ∠BAD = BC/BD
⇒ tan ∠BAC/tan ∠BAD = 3x/x
⇒ tan ∠BAC/tan ∠BAD = 3
(ii) cot ∠BAC/cot ∠BAD = (AB/BC)/(AB/BD)
⇒ cot ∠BAC/cot ∠BAD = BD/BC
⇒ cot ∠BAC/cot ∠BAD = x/3x
⇒ cot ∠BAC/cot ∠BAD = 1/3
13. If sin A = 7/25, find the value of:
(a) (2 tan A)/(cot A – sin A)
(b) cos A + (1/cot A)
(c) cot2 A – cosec2 A
Answer
Consider △ABC, where ∠B = 90°sin A = Perpendicular/Hypotenuse
⇒ sin A = BC/AC
⇒ sin A = 7/25
cosec A = 1/sin A
⇒ cosec A = 25 7
By Pythagoras theorem,
We have,
AC2 = AB2 + BC2
⇒ AB2 = AC2 – BC2
⇒ AB2 = 252 – 72
⇒ AB2 = 625 – 49
⇒ AB2 = 576
⇒ AB = √576
We get,
AB = 24
Now,
cos A = Base/Hypotenuse
⇒ cos A = AB/AC
⇒ cos A = 24/25
tan A = Perpendicular/Base
⇒ tan A = BC/AB
⇒ tan A = 7/24
cot A = (1/tan A)
⇒ cot A = 24/7
(a) 2 tan A/cot A – sin A = {2×(7/24)}/(24/7 – 7/25)
On further calculation, we get,
= (7/12)/(551/175)
= (7/12)×(175/551)
We get,
= 1225/6612
(b) cos A + 1/cot A = cos A + tan A
⇒ cos A + 1/cot A = (24/25) + (7/24)
On calculating further, we get,
cos A + 1/cot A = (576 + 175)/600
⇒ cos A + 1/cot A = 751/600
(c) cot2 A – cosec2 A = (24/7)2 – (25/7)2
⇒ cot2 A – cosec2 A = (576/49) – (625/49)
⇒ cot2 A – cosec2 A = (576 – 625)/49
We get,
cot2 A – cosec2 A = – 49/49
⇒ cot2 A – cosec2 A = – 1
14. If cosec θ = 29/20, find the value of:
(a) cosec θ – (1/cot θ)
(b) sec θ/(tan θ – cosec θ)
Answer
Consider △ABC, where ∠A = 90°cosec θ = Hypotenuse/Perpendicular
⇒ cosec θ = BC/AB
⇒ cosec θ = 29/20
By Pythagoras theorem,
We have,
BC2 = AB2 + AC2
⇒ AC2 = BC2 – AB2
⇒ AC2 = 292 – 202
⇒ AC2 = 841 – 400
⇒ AC2 = 441
⇒ AC = √441
We get,
AC = 21
Now,
sec θ = Hypotenuse/Base
⇒ sec θ = BC/AC
⇒ sec θ = 29/21
tan θ = Perpendicular/Base
⇒ tan θ = AB/AC
⇒ tan θ = 20/21
cot θ = 1/tan θ
⇒ cot θ = 21/20
(a) cosec θ – (1/cot θ) = (29/20) – {1/(21/20)}
⇒ cosec θ – (1/cot θ) = (29/20) – (20/21)
⇒ cosec θ – (1/cot θ) = (609 – 400)/420
We get,
cosec θ – (1/cot θ) = 209/420
(b) sec θ/(tan θ – cosec θ) = (29/21)/(20/21 – 29/20)
⇒ sec θ/(tan θ – cosec θ) = (29/21)/{(400 – 609)/420}
⇒ sec θ/(tan θ – cosec θ) = (29/21)/{(-209/420)}
⇒ sec θ/(tan θ – cosec θ) = (29/21)×(-420/209)
⇒ sec θ/(tan θ – cosec θ) = –580/209
15. In the given figure, AC = 13 cm, BC = 12 cm and ∠B = 90°. Without using tables, find the values of:
(a) sin A cos A
(b) (cos A – sin A) / (cos A + sin A)
Answer△ABC is a right- angled triangle.
By Pythagoras theorem,
We have,
AC2 = AB2 + BC2
⇒ AB2 = AC2 – BC2
⇒ AB2 = 132 – 122
⇒ AB2 = 169 – 144
⇒ AB2 = 25
⇒ AB = √25
We get,
AB = 5 cm
sin A = BC/AC
⇒ sin A = 12/13
cos A = AB/AC
⇒ cos A = 5/13
(a) sin A cos A = (12/13)× (5/13)
⇒ sin A cos A = 60/169
(b) (cos A – sin A)/(cos A + sin A) = {(5/13) – (12/13)}/{(5/13) + (12/13)}
⇒ (cos A – sin A)/(cos A + sin A) = (-7/13)/(17/13)
⇒ (cos A – sin A)/(cos A + sin A) = (-7/13) x (13/17)
⇒ (cos A – sin A)/(cos A + sin A) = -7/17
16. In the given figure, PQR is a triangle, in which QS ⊥ PR, Qs = 3 cm, PS = 4 cm and QR = 12 cm, find the value of:
(a) sin P
(b) cot2 P - cosec2 P
(c) 4sin2 R – 1/tan2 P
(a)
Answer
18. In the given figure, ∠Q = 90°, PS is a median on QR from P, and RT divides PQ in the ratio 1 : 2. Find :
(i) (tan ∠PSQ)/(tan ∠PRQ)
(ii) (tan ∠TSQ)/(tan ∠PRQ)
Answer(i)(ii)
19. In the given figure, AD is perpendicular to BC. Find:
(a) 5 cos x
(b) 15 tan y
(c) 5 cos x – 12 sin y + tan x
(d) 3/sinx + 4/cos y – tan y
Answer(a)20. In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of(a) 2 tan ∠BAC – sin ∠BCD
(b) 3 – 2 cos ∠BAC + 3 cot ∠BCD
Answer
(a)(b)
21. If cos 24 θ – 7 sin θ, find sin θ + cos θ.
Answer
22. If 4 sin θ = 3 cos θ, find
(a) tan2 θ + cot2 θ
(b) (6 sin θ - 2 cos θ)/(6 sin θ + 2 cos θ)
Answer
(a)Answer
Answer
25. If cos θ = 3, find the value of (4 cos θ – sin θ)/(2 cos θ + sin θ).
Answer
26. If sin 4 θ = √13,find the value of
(a) (4 sin θ – 3 cos θ)/(2 sin θ + 6 cos θ)
(b) (4 sin3 θ – 3 sin θ)
Answer
(a)Answer
28. If cot θ = 1/√3, show that (1 – cos2 θ)/(2 – sin2 θ) = 3/5
Answer
29. If cot θ = 1/√3, show that (1 – cos2 θ)/(2 – sin2 θ) = 3/5
Answer
30. If cosec θ = 1.(9/20), show that (1 – sin θ + cos θ)/(1 + sin θ + cos θ) = 3/7
Answer
Answer
Answer
33. If cot θ = b, prove that (a sin θ – b cos θ)/(a sin θ + b cos θ) = (a2 – b2)/(a2 + b2)
Answer
34. If cot θ = √7, show that (cosec2 θ – sec2 θ)/(cosec2 θ + sec2 θ) = 3/4
Answer
35. If 12 cosec θ = 13, find the value of (sin2 θ – cos2 θ)/(2 sin θ cos θ) × 1/tan2 θ.
Answer
36. If 12 cos θ = 13, find the value of (2 sin θ cos θ)/(cos2 θ – sin2 θ).
Answer
37. If sec A = 5/4, verify that (3 sin A – 4 sin3 A)/(4 cos3 A – 3 cos A) = (3 tan A – tan3 A)/(1 – 3 tan2 A).
Answer
38. If sin θ = 3/4, prove that √[(cosec2θ – cot2θ)/(sec2θ-1) = √7/3
Answer
Answer
40. If tan θ = 4, prove that √[(se2θ – cosecθ)/(secθ + cosecθ) = 1/√7
Answer
41. If tan θ = m/n, show that (m sin θ – n cos θ)/(m sin θ + n cos θ) = (m2 – n2)/(m2 + n2).
Answer