ICSE Solutions for Selina Concise Chapter 22 Trigonometrical Ratios Class 9 Maths
Exercise 22(A)
1. From the following figure, find the values of :
(i) sin A
(ii) cos A
(iii) cot A
(iv) sec C
(v) cosec C
(vi) tan C.
AnswerGiven angle ABC = 90°
⇒ AC2 = AB2 + BC2 (AC is hypotenuse)
⇒ AC2 = 32 + 42
∴ AC2 = 9+16 = 25 and AC = 5
(i) sin A = perpendicular/hypotenuse = BC/AC = 4/5
(ii) cos A = base/hypotenuse = AB/AC = 3/5
(iii) cot A = base/perpendicular = AB/BC = 3/4
(iv) sec C = hypotenuse/base = AC/BC = 5/4
(v) cosec C = hypotenuse/perpendicular = AC/AB = 5/3
(vi) tan C = perpendicular/base = AB/BC = 3/4
2. Form the following figure, find the values of :
(i) cos B
(ii) tan C
(iii) sin2B + cos2B
(iv) sin B. cos C + cos B. sin C
AnswerGiven angle BAC = 90°
⇒ BC2 = AB2 + AC2 (BC is hypotenuse)
⇒ 172 = 82 + AC2
∴ AC2 = 289 - 64 = 225 and AC = 15
(i) cos B = base/hypotenuse = AB/BC = 8/17
(ii) tan C = perpendicular/base = AB/AC = 8/15
(iii) sin B = perpendicular/hypotenuse = AC/BC = 15/17
cos B = base/hypotenuse = AB/BC = 8/17
sin2 B + cos2 B = (15/17)2 + (8/17)2
= 289/289
= 1
(iv) sin B = perpendicular/hypotenuse = AC/BC = 15/17
cos B = base/hypotenuse = AB/BC = 8/17
sin C = perpendicular/hypotenuse = AB/BC = 8/17
cos C = base/hypotenuse = AC/BC = 15/17
sinB. cosC + cosB. sinC = (15/17)×(15/17) + (8/17)×(8/17)
= (225+64)/289
= 289/289
= 1
3. From the following figure, find the values of :
(i) cos A (ii) cosec A
(iii) tan2A – sec2A (iv) sin C
(v) sec C (vi) cot2 C – 1/sin² C
AnswerConsider the diagram as
⇒ AB2 = AD2 + BD2 (AB is hypotenuse is △ABD)
⇒ AB2 = 32 + 42
∴ AB2 = 9+ 16 = 25 and AB = 5
⇒ BC2 = BD2 + DC2 (BC is hypotenuse in △BDC)
⇒ DC2 = 122 - 42
∴ DC2 = 144 - 16 = 128 and DC = 8√2
(i) cos A = base/hypotenuse = AD/AB = 3/5
(ii) cosec A = hypotenuse/perpendicular = AB/BD = 5/4
(iii) tan A = perpendicular/base = BD/AD = 4/3
sec A = hypotenuse/base = AB/AD = 5/3
tan2 A - se2 A = (4/3)2 - (5/3)2
= (16/9) - (25/9)
= -9/9
= -1
(iv) sin C = perpendicular/hypotenuse = BD/BC = 4/12 = 1/3
(v) sec C = hypotenuse/base = BC/DC = 12/8√2 = 3/2√2 = 3√2/4
(vi) cot C = base/perpendicular = DC/BD = 8√2/4 = 2√2
sin C = perpendicular/hypotenuse = BD/BC = 4/12 = 1/3
cot2 C - 1/sin2 C = (2√2)2 - 1/(1/3)2
= 8- 9
= -1
4. From the following figure, find the values of :
(i) sin B
(ii) tan C
(iii) sec2 B – tan2B
(iv) sin2C + cos2C
AnswerGiven angle ADB = 90° and ADC = 90°
5. Given: sin A = 3/5 , find :
(i) tan A
(ii) cos A
AnswerConsider the diagram below :
6. From the following figure, find the values of :
(i) sin A
(ii) sec A
(iii) cos2 A + sin2A
AnswerGiven angle ABC = 90° in the figure
7. Given: cos A = 5/13
Evaluate: (i)( sin A – Cot A )/2 Tan A
(ii) cot A+ (1 / cos A)
AnswerConsider the diagram below :
8. Given: sec A =29/11, evaluate: sin A – 1/ Tan A
AnswerConsider the diagram below :
9. Given: tan A =4/3, find : cosecA/(cot A-sec A)
AnswerConsider the diagram below :
10. Given: 4 cot A = 3 find;
(i) sin A
(ii) sec A
(iii) cosec2 A – cot2A.
AnswerConsider the diagram below :
11. Given: cos A = 0.6; find all other trigonometrical ratios for angle A.
AnswerConsider the diagram below :
12. In a right-angled triangle, it is given that A is an acute angle and tan A =. 5/12
find the value of :
(i) cos A
(ii) sin A
(iii) (cos A + sin A)/(cos A – Sin A)
AnswerConsider the diagram below :
13. Given: sin θ = p/q
Find cos θ + sin θ in terms of p and q.
AnswerConsider the diagram below :
14. If cos A =1/2 and sin B = 1/√2 , find the value of : .
tan A–tan B/(1+tan A tan B)
Are angles A and B from the same triangle? Explain.
AnswerConsider the diagram below :
15. If 5 cot θ = 12, find the value of : Cosec θ + sec θ
AnswerConsider the diagram below :
16. If tan x = 1 1/3, find the value of : 4 sin2x – 3 cos2x + 2
AnswerConsider the diagram below :
17. If cosec θ= √5, find the value of:
(i) 2 – sin2θ- cos2θ
(ii) 2 + (1+sin2θ) - (cos2θ/sin2θ)
AnswerConsider the diagram below :
18. If sec A =√2 , find the value of : (3cos2 A + 5 tan2 A)/(4tan4 A - sin2 A)
AnswerConsider the diagram below :
19. If cot = 1; find the value of: 5 tan2θ + 2 sin2θ – 3
AnswerConsider the diagram below :
20. In the following figure:
AD⟂BC, AC = 26 CD = 10, BC = 42,
∠DAC = x and B = y.
Find the value of :
(i) cot x
(ii) 1/sin2 y - 1/tan2 y
(iii) 6/cos x - 5/cos y + 8 tan y.
AnswerGiven,
∠DAC = 90° and ∠ADB = 90° in the figure
Exercise 22(B)
1. From the following figure, find:
(i) y
(ii) sin xo
(iii) (sec xo – tan xo) (sec xo + tan xo)
AnswerConsider the given figure
2. Use the given figure to find:
(i) sin xo
(ii) cos yo
(iii) 3 tan xo – 2 sin yo + 4 cos yo.
AnswerSince, the triangle is a right angled triangle, so using Pythagorean Theorem
3. In the diagram, given below, triangle ABC is right-angled at B and BD is perpendicular to AC.
Find:
(i) cos ∠DBC
(ii) cot ∠DBA
AnswerSince the triangle is a right angled triangle.
So using Pythagorean Theorem,
AC2 = 52 + 122
⇒ AC2 = 25 + 144
⇒ AC2 = 169
⇒ AC = 13
In △CBD and △CBA, the C is common to both the triangles, ∠CDB = ∠CBA = 90°, so therefore ∠CBD = ∠CAB.
Therefore, △CBD and △CBA are similar triangles according to AAA Rule.
4. In the given figure, triangle ABC is right-angled at B. D is the foot of the perpendicular from B to AC. Given that BC = 3 cm and AB = 4 cm. find:
(i) tan DBC
(ii) sin DBA
AnswerConsider the given figure
5. In triangle ABC, AB = AC = 15 cm and BC = 18 cm, find cos ABC.
AnswerConsider the figure below
In the isosceles △ABC, AB = AC = 15 cm and BC = 18cm the perpendicular drawn from angle A to the side BC divides the side BC into two equal parts BD = DC = 9 cm
6. In the figure given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find:
(i) sin B
(ii) tan C
(iii) sin2 B + cos2B
(iv) tan C – cot B
AnswerConsider the figure below
In the isosceles △ABC, AB = AC = 5cm and BC = 8cm the perpendicular drawn from angle A to the side BC divides the side BC into two equal parts BD = DC = 4cm
Since ∠ADB = 90°
7. In triangle ABC; ABC = 90o, CAB = xo, tan xo = and BC = 15 cm. Find the measures of AB and AC.
AnswerConsider the figure
8. Using the measurements given in the following figure:
(i) Find the value of sin and tan.
(ii) Write an expression for AD in terms of
AnswerConsider the figure
A perpendicular is drawn from D to the side AB at point E which makes BCDE is a rectangle.
Now in right angled triangle BCD using Pythagorean Theorem
9. In the given figure;
BC = 15 cm and sin B =.
(i) Calculate the measure of AB and AC.
(ii) Now, if tan ADC = 1; calculate the measures of CD and AD.
Also, show that: tan2B – 1/cos² B = -1
AnswerGiven
Sin B = 4/5
i.e. perpendicular /hypotenuse = AC/AB = 4/5
Therefore if length of perpendicular = 4x, length of hypotenuse = 5x
Since,
10. If sin A + cosec A = 2;
Find the value of sin2 A + cosec2 A.
Answersin A + cosec A = 2
Squaring both sides
11. If tan A + cot A = 5;
Find the value of tan2 A + cot2 A.
Answertan A + cot A = 5
Squaring both sides
12. Given: 4 sin = 3 cos ; find the value of:
(i) sin
(ii) cos
(iii) cot2 – cosec2.
(iv) 4 cos2– 3 sin2+ 2
Answer13. Given : 17 cos = 15;
Find the value of : tan + 2 sec.
AnswerConsider the diagram below :
14. Given : 5 cos A – 12 sin A = 0; evaluate :
(sin A + cos A)/(2cos A - sin A)
5 cos A - 12 sin A = 0
⇒ 5 cos A = 12 sin A
15. In the given figure; C = 90o and D is mid-point of AC. Find
(i) tan CAB/tan CDB
(ii) tan ABC/tan CDB
AnswerSince D is mid - point of AC so AC = 2DC
16. If 3 cos A = 4 sin A, find the value of :
(i) cos A
(ii) 3 – cot2 A + cosec2A.
AnswerConsider the diagram below :
17. In triangle ABC, B = 90o and tan A = 0.75. If AC = 30 cm, find the lengths of AB and BC.
AnswerConsider the figure
18. In rhombus ABCD, diagonals AC and BD intersect each other at point O.
If cosine of angle CAB is 0.6 and OB = 8 cm, find the lengths of the the side and the diagonals of the rhombus.
AnswerConsider the figure
Since the sides of a rhombus are equal so the length of the side of the rhombus = 10cm
The diagonals are
BD = 8×2 = 16 cm
AC = 6×2 = 12 cm
19. In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find:
(i) cos B
(ii) sin C
(iii) tan2 B – sec2 B + 2
AnswerConsider the figure below
20. In triangle ABC, AD is perpendicular to BC. sin B = 0.8, BD = 9 cm and tan C = 1. Find the length of AB, AD, AC and DC.
AnswerConsider the figure below
21. Given q tan A = p, find the value of :
(p sinA - q cosA)/(p sinA + q cosA)
Answer
22. If sin A = cos A, find the value of 2 tan2A – 2 sec2 A + 5.
AnswerConsider the figure
23. In rectangle ABCD, diagonal BD = 26 cm and cotangent of angle ABD = 1.5. Find the area and the perimeter of the rectangle ABCD.
AnswerConsider the diagram
24. If 2 sin x = , evaluate.
(i) 4 sin3 x – 3 sin x.
(ii) 3 cos x – 4 cos3 x.
AnswerConsider the figure
25. If sin A = √3/2 and cos B = √3/2, find the value of :
(tan A - tan B)/(1+tanA . tan B) .
Consider the diagram below :
26. Use the information given in the following figure to evaluate:
10/sin x + 6/sin y - 6 cot y
AnswerConsider the given diagram as
27. If sec A = √2 , find: (3 cot2 A + 2 sin2 A)/(tan2 A - cos2 A) .
AnswerConsider the figure
28. If 5 cosθ = 3, evaluate : (cosecθ - cotθ)/(cosecθ + cotθ) .
Answer29. If cosec A + sin A = 5,1/5 find the value of cosec2A + sin2A.
Answer30. If 5 cosθ = 6 sinθ ; evaluate:
(i) tan θ
(ii) (12sinθ - 3cosθ)/(12sinθ + 3cosθ)
Answer