ML Aggarwal Solutions for Chapter 9 Logarithms Class 9 Maths ICSE
Exercise 9.1
1. Convert the following to logarithmic form:
(i) 52 = 25
(ii) a5 = 64
(iii) 7x = 100
(iv) 9o = 1
(v) 61 = 6
(vi) 3-2 = 1/9
(vii) 10-2 = 0.01
(viii) (81)3/4 = 27
Solution
(i) 52 = 25
Let us apply log, we get
Log5 25 = 2
(ii) a5 = 64
Let us apply log, we get
Loga 64 = 5
(iii) 7x = 100
Let us apply log, we get
Log7 100 = x
(iv) 9o = 1
Let us apply log, we get
Log9 1 = 0
(v) 61 = 6
Let us apply log, we get
Log6 6 = 1
(vi) 3-2 = 1/9
Let us apply log, we get
Log3 1/9 = -2
(vii) 10-2 = 0.01
Let us apply log, we get
Log10 0.01 = -2
(viii) (81)3/4 = 27
Let us apply log, we get
Log81 27 = ¾
2. Convert the following into exponential form:
(i) log2 32 = 5
(ii) log3 81=4
(iii) log3 1/3 = -1
(iv) log3 4 = 2/3
(v) log8 32 = 5/3
(vi) log10 (0.001) = -3
(vii) log2 0.25 = -2
(viii) loga (1/a) = -1
Solution
(i) log2 32 = 5
The exponential form of the expression is
25 = 32
(ii) log3 81=4
The exponential form of the expression is
34 = 81
(iii) log3 1/3 = -1
The exponential form of the expression is
3-1 = 1/3
(iv) log3 4 = 2/3
The exponential form of the expression is
(8)2/3 = 4
(v) log8 32 = 5/3
The exponential form of the expression is
(8)5/3 = 32
(vi) log10 (0.001) = -3
The exponential form of the expression is
10-3 = 0.001
(vii) log2 0.25 = -2
The exponential form of the expression is
2-2 = 0.25
(viii) loga (1/a) = -1
The exponential form of the expression is
a-1 = 1/a
3. By converting to exponential form, find the values of:
(i) log2 16
(ii) log5 125
(iii) log4 8
(iv) log9 27
(v) log10 (.01)
(vi) log7 1/7
(vii) log.5 256
(viii) log2 0.25
Solution
(i) log2 16
Let us consider log2 16 = x
So,
2x = 16
= 2 × 2 × 2 × 2
2x = 24
By comparing the powers,
x = 4
(ii) log5 125
Let us consider log5 125 = x
So,
(5)x = 125
= 5 × 5 × 5
5x = 53
By comparing the powers,
x = 3
(iii) log4 8
Let us consider log4 8 = x
So,
(4)x = 8
(2 × 2)x = 2 × 2 × 2
22x = 23
By comparing the powers,
2x = 3
x = 3/2
(iv) log9 27
Let us consider log9 27= x
So,
(9)x = 27
(3 × 3)x = 3 × 3 × 3
32x = 33
By comparing the powers,
2x = 3
x = 3/2
(v) log10 (.01)
Let us consider log10 (.01) = x
So,
(10)x = 1/100
= 1/10 × 1/10
10x = 1/(10)2
10x = 10-2
By comparing the powers,
x = -2
(vi) log7 1/7
Let us consider log7 1/7 = x
So,
(7)x = 1/7
7x = 7-1
By comparing the powers,
x = -1
(vii) log.5 256
Let us consider log.5 256 = x
So,
(.5)x = 256
(5/10)x = 2×2×2×2×2×2×2×2
(1/2)x = 28
(2)-x = 28
By comparing the powers,
-x = 8
x = -8
(viii) log2 0.25
Let us consider log2 0.25 = x
So,
(2)x = 0.25
= 25/100
2x = 1/4
2x = (2)-2
By comparing the powers,
x = -2
4. Solve the following equations for x:
(i) log3 x = 2
(ii) logx 25 = 2
(iii) log10 x = -2
(iv) log4 x = ½
(v) logx 11 = 2.5
(vi) logx ¼ = -1
(vii) log81 x = 3/2
(viii) log9 x = 2.5
(ix) log4 x = -1.5
Solution
(i) log3 x = 2
Let us simplify the expression,
(3)2 = x
x = 9
(ii) logx 25 = 2
Let us simplify the expression,
(x)2 = 25
= 5×5
x2 = 52
Since the powers are same,
So,
x = 5
(iii) log10 x = -2
Let us simplify the expression,
(10)-2 = x
x = 1/(10)2
= 1/100
x = 0.01
(iv) log4 x = ½
Let us simplify the expression,
(4)1/2 = x
x = (2 × 2)1/2
= (2)2×1/2
x = 2
(v) logx 11 = 2.5
Let us simplify the expression,
(x)1 = 11
x = 11
(vi) logx ¼ = -1
Let us simplify the expression,
(x)-1 = ¼
x-1 = 4-1
Since the powers are same,
So,
x = 4
(vii) log81 x = 3/2
Let us simplify the expression,
(81)3/2 = x
x = 813/2
= (34)3/2
= 34×3/2
= 36
= 3×3×3×3×3×3
= 729
x = 729
(viii) log9 x = 2.5
log9 x = 5/2
Let us simplify the expression,
(9)5/2 = x
x = (32)5/2
= 32×5/2
= 35
= 3×3×3×3×3
= 234
x = 234
(ix) log4 x = -1.5
log4 x = -3/2
Let us simplify the expression,
(4)-3/2 = x
x = (22)-3/2
= 22×-3/2
= 2-3
= 1/23
= 1/(2×2×2)
= 1/8
x = 1/8
5. Given log10 a = b, express 102b-3 in terms of a.
Solution
Given:
log10 a = b
(10)b = a
Now,
102b-3 = (10)2b / (10)3
= (10b)2/(10×10×10)
Substitute the value of (10)b = a, we get
= a2/1000
6. Given log10 x= a, log10 y = b and log10 z =c,
(i) write down 102a-3 in terms of x.
(ii) write down 103b-1 in terms of y.
(iii) if log10 P = 2a + b/2 – 3c, express P in terms of x, y and z.
Solution
Given:
log10 x= a
- (10)a = x
log10 y = b
- (10)b = y
log10 z =c
- (10)c = z
(i) Write down 102a-3 in terms of x.
102a-3 = (10)2a/(10)3
= (10a)2/(10×10×10)
Substitute the value of (10)a = x, we get
= x2/1000
(ii) Write down 103b-1 in terms of y.
103b-1 = (10)3b/(10)1
= (10b)3/(10)
Substitute the value of (10)b = y, we get
= y3/10
(iii) If log10 P = 2a + b/2 – 3c, express P in terms of x, y and z.
we know that,
(10)a = x
(10)b = y
(10)c = z
By substituting the values
log10 P = 2a + b/2 – 3c
= 2 log10 x + ½ log10 y – 3 log10 z
= log10 x2 + log10 y1/2 – log10 z3
= log10 (x2 + y1/2) – log10 z3
= log10 [(x2√y)/z3]
P = (x2√y)/z3
7. If log10x = a and log10y = b, find the value of xy.
Solution
Given:
log10x = a
⇒ (10)a = x
⇒ log10y = b
⇒ (10)b = y
Then,
xy = (10)a × (10)b
= (10)a+b
8. Given log10 a = m and log10 b = n, express a3/b2 in terms of m and n.
Solution
Given:
log10 a = m
⇒ (10)m = a
⇒ log10 b = n
⇒ (10)n = b
So,
a3/b2 = (10m)3/(10n)2
= 103m/102n
= 103m–2n
9. Given log10a= 2a and log10y = –b/2
(i) write 10a in terms of x.
(ii) write 102b+1 in terms of y.
(iii) if log10P= 3a – 2b, express P in terms of x and y.
Solution
Given:
log10a= 2a
⇒ (10)2a = a
⇒ log10y = –b/2
⇒ (10)-b/2 = y
(i) Write 10a in terms of x.
10a = (102a)1/2
= (x)1/2
= √x
(ii) Write 102b+1 in terms of y.
102b+1 = 102b ×101
= 104(b/2) × 101
= (10b/2)4 ×101
= y4 × 101
= 10y4
(iii) If log10P= 3a – 2b, express P in terms of x and y.
log10P= 3a – 2b
Substitute the values,
log10P= 3/2 (2a) – 4(b/2)
= 3/2 (log10 x) – 4 (log10 y)
= (log10 x)3/2 – (log10 y)4
= log10 [(x3/2)/y4]
P = (x3/2)/y4
10. If log2 y = x and log3 z = x, find 72x in terms of y and z.
Solution
Given:
log2 y = x
⇒ 2x = y
⇒ log3 z = x
⇒ 3x = z
So,
72x = (2×2×2×3×3)x
= (23 × 32)x
= 23x × 32x
= (2x)3 × (3x)2
= y3 × z2
= y3z2
11. If log2 x = a and log5y = a, write 1002a-1 in terms of x and y.
Solution
Given:
log2 x = a
⇒ 2a = x
⇒ log5y = a
⇒ 5a = y
So,
1002a-1 = (2×2×5×5)2a-1
= (22 × 52)2a-1
= 24a-2 × 5a-2
= (24a)/22 × (54a)/52
= [(2a)4 × (5a)4]/(4×25)
= (x4y4)/100
Exercise 9.2
1. Simplify the following:
(i) log a3 – log a2
(ii) log a3 ÷ log a2
(iii) log 4/log 2
(iv) (log 8 log 9)/log 27
(v) log 27/log √3
(vi) (log 9 – log 3)/log 27
Solution
(i) log a3 – log a2
By using Quotient law,
log a3 – log a2
= log (a3/a2)
= log a
(ii) log a3 ÷ log a2
By using power law,
log a3 ÷ log a2
= 3log a ÷ 2 log a
= 3log a / 2log a
= 3/2
(iii) log 4/log 2
Let us simplify the expression,
log 4/log 2
= log(2×2)/log 2
By using power law,
= 2 log 2/log 2
= 2
(iv) (log 8 log 9)/log 27
Let us simplify the expression,
(log 8 log 9)/log 27
= (log 23. log 32)/log 33
By using power law,
= [(3 log 2).(2 log 3)]/(3 log 3)
= [(log 2).2]/1
= 2 log 2
= log 22
= log 4
(v) log 27/log √3
Let us simplify the expression,
log 27/log √3
= log(3×3×3)/log(3)1/2
= log 33/log 31/2
By using power law
= 3log 3/((1/2)log 3)
= (3×2)/1(log 3/log 3)
= (6)(1)
= 6
(vi) (log 9 – log 3)/log 27
Let us simplify the expression,
(log 9 – log 3)/log 27
= [log(3×3) – log 3]/log(3×3×3)
= [log 32 – log 3]/log 33
By using power law
= [2 log 3 – log 3]/3log 3
= log 3/3log 3
= 1/3
2. Evaluate the following:
(i) log (10 ÷ ∛10)
(ii) 2 + ½ log(10-3)
(iii) 2 log 5 + log 8 – ½ log 4
(iv) 2 log 103 + 3 log 10-2 – 1/3 log 5-3 + ½ log 4
(v) 2 log 2 + log 5 – ½ log 36 – log 1/30
(vi) 2 log 5 + log 3 + 3 log 2 – ½ log 36 – 2 log 10
(vii) log 2 + 16 log 16/15 + 12 log 25/24 + 7 log 81/80
(viii) 2 log10 5 + log10 8 – ½ log10 4
Solution
(i) log (10 ÷ ∛10)
Let us simplify the expression,
log (10 ÷ ∛10)
= log (10 ÷ 101/3)
= log (101 – 1/3)
= log (102/3)
= 2/3 log 10
= 2/3 ×(1)
= 2/3
(ii) 2 + ½ log(10-3)
Let us simplify the expression,
2 + ½ log(10-3)
= 2 + ½ × (-3) log 10
= 2 – 3/2 log 10
= 2 – 3/2 ×(1)
= 2 – 3/2
= (4-3)/2
= ½
(iii) 2 log 5 + log 8 – ½ log 4
Let us simplify the expression,
2 log 5 + log 8 – ½ log 4
= log 52 + log 8 – ½ log 22
= log 25 + log 8 – ½ 2log 2
= log 25 + log 8 – log 2
= log (25×8)/2
= log (25×4)
= log 100
= log 102
= 2 log 10
= 2 ×(1)
= 2
(iv) 2 log 103 + 3 log 10-2 – 1/3 log 5-3 + ½ log 4
Let us simplify the expression,
2 log 103 + 3 log 10-2 – 1/3 log 5-3 + ½ log 4
= 2×3 log 10 + 3(-2)log 10 – 1/3 (-3) log 5 + ½ log 22
= 6 log 10 – 6 log 10 + log 5 + ½ 2 log 2
= 6 log 10 – 6 log 10 + log 5 + log 2
= 0 + log 5 + log 2
= log (5×2)
= log 10
= 1
(v) 2 log 2 + log 5 – ½ log 36 – log 1/30
Let us simplify the expression,
2 log 2 + log 5 – ½ log 36 – log 1/30
= log 22 + log 5 – ½ log 62 – log (1/30)
= log 4 + log 5 – log 6 – log 1/30
= log 4 + log 5 – log 6 – (log 1 – log 30)
= log 4 + log 5 – log 6 – log 1 + log 30
= log 4 + log 5 + log 30 – (log 6 + log 1)
= log (4×5×30) – log (6×1)
= log (4×5×30)/(6×1)
= log (4×5×5)
= log 100
= log 102
= 2 log 10
= 2 (1)
= 2
(vi) 2 log 5 + log 3 + 3 log 2 – ½ log 36 – 2 log 10
Let us simplify the expression,
2log 5 + log 3 + 3log 2 – ½ log 36 – 2log 10
= log 52 + log 3 + log 23 – ½ log 62 – log 102
= log 25 + log 3 + log 8 – log 6 – log 100
= log (25×3×8) – log(6×100)
= log (25×3×8)/(6×100)
= log (1×3×8)/(6×4)
= log 24/24
= log 1
= 0
(vii) log 2 + 16 log 16/15 + 12 log 25/24 + 7 log 81/80
Let us simplify the expression,
log 2 + 16 log 16/15 + 12 log 25/24 + 7 log 81/80
= log 2 + 16(log 16 – log 15) + 12(log 25 – log 24) + 7(log 81 – log 80)
= log 2 + 16 (log 24 – log (3×5)) + 12 (log 52 – log (3×2×2×2)) + 7 (log (3×3×3×3) – log (24×5))
= log 2 + 16(4log 2 – (log 3 + log 5)) + 12 (2log 5 – log (3×23)) + 7 (log 34 – (log 24 + log 5))
= log 2 + 16 (4log 2 – log 3 – log 5) + 12 (2log 5 – (log 3 + 3log 2)) + 7 (4log 3 – 4log 2 – log 5)
= log 2 + 64log 2 – 16log 3 – 16log 5 + 24log 5 – 12log 3 – 36log 2 + 28log 3 – 28log 2 – 7log 5
= (log 2 + 64log 2 – 36log 2 – 28log 2) + (-16log 3 – 12log 3 + 28log 3) + (-16log 5 + 24log 5 – 7log 5)
= (65log 2 – 64log 2) + (-28log 3 + 28log 3) + (-23log 5 + 24log 5)
= log 2 + 0 + log 5
= log (2×5)
= log 10
= 1
(viii) 2 log10 5 + log10 8 – ½ log10 4
Let us simplify the expression,
2 log10 5 + log10 8 – ½ log10 4
= log10 52 + log10 8 – log10 41/2
= log10 25 + log10 8 – log10 (2)2× 1/2
= log10 25 + log10 8 – log10 2
= log10 [(25×8)/2]
= log10 (25×4)
= log10 100
= log10 102
= 2 log10 10
= 2 ×(1)
= 2
3. Express each of the following as a single logarithm:
(i) 2 log 3 – ½ log 16 + log 12
(ii) 2 log10 5 – log10 2 + 3 log10 4 + 1
(iii) ½ log 36 + 2 log 8 – log 1.5
(iv) ½ log 25 – 2 log 3 + 1
(v) ½ log 9 + 2 log 3 – log 6 + log 2 – 2
Solution
(i) 2 log 3 – ½ log 16 + log 12
Let us simplify the expression into single logarithm,
2 log 3 – ½ log 16 + log 12
= 2 log 3 – ½ log 42 + log 12
= 2 log 3 – log 4 + log 12
= log 32 – log 4 + log 12
= log 9 – log 4 + log 12
= log (9×12)/4
= log (9×3)
= log 27
(ii) 2 log10 5 – log10 2 + 3 log10 4 + 1
Let us simplify the expression into single logarithm,
2 log10 5 – log10 2 + 3 log10 4 + 1
= log10 52 – log10 2 + log10 43 + log10 10
= log10 25 – log10 2 + log10 64 + log10 10
= log10 (25×64×10) – log10 2
= log10 (16000) – log10 2
= log10 (16000/2)
= log10 8000
(iii) ½ log 36 + 2 log 8 – log 1.5
Let us simplify the expression into single logarithm,
½ log 36 + 2 log 8 – log 1.5
= log 361/2 + log 82 – log 1.5
= log (6)2×1/2 + log 64 – log 1.5
= log 6 + log 64 – log (15/10)
= log 6 + log 64 – (log 15 – log 10)
= log (6×64) – log 15 + log 10
= log (6×64×10) – log 15
= log [(6×64×10)/15]
= log (4×64)
= log 256
(iv) ½ log 25 – 2 log 3 + 1
Let us simplify the expression into single logarithm,
½ log 25 – 2 log 3 + 1
= log 251/2 – log 32 + log 10
= log (5)2×1/2 – log 9 + log 10
= log 5 – log 9 + log 10
= log (5×10) – log 9
= log ((5×10)/9)
= log 50/9
(v) ½ log 9 + 2 log 3 – log 6 + log 2 – 2
Let us simplify the expression into single logarithm,
½ log 9 + 2 log 3 – log 6 + log 2 – 2
= log 91/2 + log 32 – log 6 + log 2 – log 100
= log 32×1/2 + log 9 – log 6 + log 2 – log 100
= log 3 + log 9 – log 6 + log 2 – log 100
= log [(3×9×2)/(6×100)]
= log 9/100
4. Prove the following:
(i) log10 4 ÷ log10 2 = log3 9
(ii) log10 25 + log10 4 = log5 25
Solution
(i) log10 4 ÷ log10 2 = log3 9
Let us consider LHS, log10 4 ÷ log10 2
log10 4 ÷ log10 2
= log10 22 ÷ log10 2
= 2 log10 2 ÷ log10 2
= 2 log10 2/log10 2
= 2 (1)
= 2
Now let us consider RHS,
log3 9 = log3 32
= 2 log3 3
= 2×(1)
= 2
∴ LHS = RHS
Hence, proved.
(ii) log10 25 + log10 4 = log5 25
Let us consider LHS, log10 25 + log10 4
log10 25 + log10 4
= log10 (25×4)
= log10 100
= log10 102
= 2 log10 10
= 2×(1)
= 2
Now, let us consider RHS,
log5 25 = log5 52
= 2 log5 5
= 2 ×(1)
= 2
∴ LHS = RHS
Hence proved.
5. If x = (100)a, y = (10000)b and z = (10)c, express log [(10√y)/x2z3] in terms of a, b, c.
Solution
Given:
x = (100)a = (102)a = 102a
y = (10000)b = (104)b = 104b
z = (10)c
It is given that, log [(10√y)/x2z3]
log [(10√y)/x2z3] = (log 10 + log √y) – (log x2 + log z3)
= (1 + log(y)1/2) – (log x2 + log z3) [we know that, log 10 = 1]
= (1 + ½ log y) – (2 log x + 3 log z)
Now substitute the values of x, y, z, we get
= (1 + ½ log 104b) – (2 log 102a + 3 log 10c)
= (1 + ½ 4b log 10) – (2×2a log 10 + 3×c log 10)
= (1 + ½ 4b) – (2×2a + 3c) [Since, log 10 = 1]
= (1 + 2b) – (4a + 3c)
= 1 + 2b – 4a – 3c
6. If a = log10x, find the following in terms of a :
(i) x
(ii) log10 5√x2
(iii) log10 5x
Solution
Given:
a = log10x
(i) x
10a = x
∴ x = 10a
(ii) log10 5√x2
log10 5√x2 = log10 (x2)1/5
= log10 (x)2/5
= 2/5 log10 x
= 2/5 ×(a)
= 2a/5
(iii) log10 5x
x = (10)a
= log10 5x
= log10 5(10)a
= log10 5 + log10 10
= log10 5 + a×(1)
= a + log10 5
7. If a =log 2/3, b = log 3/5 and c = 2 log √(5/2). Find the value of
(i) a + b + c
(ii) 5a+b+c
Solution
Given:
a =log 2/3
b = log 3/5
c = 2 log √(5/2)
(i) a + b + c
Let us substitute the given values, we get
a + b + c = log 2/3 + log 3/5 + 2 log √(5/2)
= (log 2 – log 3) + (log 3 – log 5) + 2 log (5/2)1/2
= log 2 – log 3 + log 3 – log 5 + 2 × ½(log 5 – log 2)
= log 2 – log 3 + log 3 – log 5 + log 5 – log 2
= 0
(ii) 5a+b+c
5a+b+c = 50
= 1
8. If x = log 3/5, y = log 5/4 and z = 2 log √3/2, find the value of
(i) x + y – z
(ii) 3x+y-z
Solution
Given:
x = log 3/5 = log 3 – log 5
y = log 5/4 = log 5 – log 4
z = 2 log √3/2 = log (√3/2)2 = log ¾ = log 3 – log 4
(i) x + y – z
Let us substitute the given values, we get
x + y – z = log 3 – log 5 + log 5 – log 4 – (log 3 – log 4)
= log 3 – log 5 + log 5 – log 4 – log 3 + log 4
= 0
(ii) 3x+y-z
3x+y-z = 30
= 1
9. If x = log10 12, y = log4 2 × log10 9 and z = log10 0.4, find the values of
(i) x – y – z
(ii) 7x-y-z
Solution
Given:
x = log10 12
y = log4 2 × log10 9
z = log10 0.4
(i) x – y – z
Let us substitute the given values, we get
x – y – z = log10 12 – log4 2 × log10 9 – log10 0.4
= log10 (3×4) – log4 41/2 × log10 32 – log10 4/10
= log10 3 + log10 4 – ½ log4 4 × 2 log10 3 – (log104 – log10 10)
= log10 3 + log10 4 – ½ × 1 × 2 log10 3 – log104 + 1
= log10 3 + log10 4 – log10 3 – log104 + 1
= 1
(ii) 7x-y-z
7x-y-z = 71
= 7
10. If log V + log 3 = log π + log 4 + 3 log r, find V in terms of other quantities.
Solution
Given:
log V + log 3 = log π + log 4 + 3 log r
Let us simplify the given expression to find V,
log (V×3) = log (Ï€×4×r3)
⇒ log 3V = log 4Ï€r3
⇒ 3V = 4Ï€r3
⇒ V = 4Ï€r3/3
11. Given 3 (log 5 – log 3) – (log 5 – 2 log 6) = 2 – log n, find n.
Solution
Given:
3 (log 5 – log 3) – (log 5 – 2 log 6) = 2 – log n
Let us simplify the given expression to find n,
3 log 5 – 3 log 3 – log 5 + 2 log 6 = 2 – log n
⇒ 2 log 5 – 3 log 3 + 2 log 6 = 2 (1) – log n
⇒ log 52 – log 33 + log 62 = 2 log 10 – log n [Since, 1 = log 10]
⇒ log 25 – log 27 + log 36 – log 102 = – log n
⇒ log n = – log 25 + log 27 – log 36 + log 100
= (log 100 + log 27) – (log 25 + log 36)
= log (100×27) – log (25×36)
= log (100×27)/(25×36)
⇒ log n = log 3
⇒ n = 3
12. Given that log10 y + 2 log10 x = 2, express y in terms of x.
Solution
Given:
log10 y + 2 log10 x = 2
Let us simplify the given expression,
log10 y + log10 x2 = 2(1)
⇒ log10 y + log10 x2 = 2 log10 10
⇒ log10 (y×x2) = log10 102
⇒ yx2 = 100
⇒ y = 100/x2
13. Express log10 2 + 1 in the form log10x.
Solution
Given:
log10 2 + 1
Let us simplify the given expression,
log10 2 + 1
= log10 2 + log10 10 [Since, 1 = log10 10 ]
= log10 (2×10)
= log10 20
14. If a2 = log10 x, b2 = log10 y and a2/2 – b2/3 = log10 z. Express z in terms of x and y.
Solution
Given:
a2 = log10 x
b2 = log10 y
a2/2 – b2/3 = log10 z
Let us substitute the given values in the expression, we get
log10 x/2 – log10 y/3 = log10 z
⇒ log10 x1/2 – log10 y1/3 = log10 z
⇒ log10 √x – log10 ∛y = log10 z
⇒ log10 √x/∛y = log10 z
⇒ √x/∛y = z
⇒ z = √x/∛y
15. Given that log m = x + y and log n = x – y, express the value of log m²n in terms of x and y.
Solution
Given:
log m = x + y
log n = x – y
log m²n
Let us simplify the given expression,
log m²n = log m2 + log n
= 2 log m + log n
By substituting the given values, we get
= 2 (x + y) + (x – y)
= 2x + 2y + x – y
= 3x + y
16. Given that log x = m + n and log y = m – n, express the value of log (10x/y2) in terms of m and n.
Solution
Given:
log x = m + n
log y = m – n
log (10x/y2)
Let us simplify the given expression,
log (10x/y2)
= log 10x – log y2
= log 10 + log x – 2 log y
= 1 + log x – 2 log y
= 1 + (m + n) – 2(m – n)
= 1 + m + n – 2m + 2n
= 1 – m + 3n
17. If log x/2 = log y/3, find the value of y4/x6.
Solution
Given:
log x/2 = log y/3
Let us simplify the given expression,
By cross multiplying, we get
3 log x = 2 log y
⇒ log x3 = log y2
So, x3 = y2
now square on both sides, we get
(x3)2 = (y2)2
⇒ x6 = y4
⇒ y4/x6 = 1
18. Solve for x:
(i) log x + log 5 = 2 log 3
(ii) log3 x – log3 2 = 1
(iii) x = log 125/log 25
(iv) (log 8/log 2) × (log 3/log√3) = 2 log x
Solution
(i) log x + log 5 = 2 log 3
Let us solve for x,
Log x = 2 log 3 – log 5
= log 32 – log 5
= log 9 – log 5
= log (9/5)
∴ x = 9/5
(ii) log3 x – log3 2 = 1
Let us solve for x,
log3 x = 1 + log3 2
= log3 3 + log3 2 [Since, 1 can be written as log3 3 = 1]
= log3 (3×2)
= log3 6
∴ x = 6
(iii) x = log 125/log 25
x = log 53/log52
= 3 log 5/ 2 log 5
= 3/2 [Since, log 5/log 5 = 1]
∴ x = 3/2
(iv) (log 8/log 2)×(log 3/log√3) = 2 log x
⇒ (log 23/log 2)×(log 3/log31/2) = 2 log x
⇒ (3log 2/log 2)×(log 3/½ log 3) = 2 log x
⇒ 3 × 1/(½) = 2 log x
⇒ 3 × 2 = 2 log x
⇒ 6 = 2 log x
⇒ log x = 6/2
⇒ log x = 3
⇒ x = (10)3 = 1000
∴ x = 1000
19. Given 2 log10 x + 1= log10 250, find
(i) x
(ii) log102x
Solution
Given:
2 log10 x + 1= log10 250
(i) let us simplify the above expression,
log10 x2 + log10 10 = log10 250 [Since, 1 can be written as log10 10]
⇒ log10 (x2 × 10) = log10 250
⇒ (x2 × 10) = 250
⇒ x2 = 250/10
⇒ x2 = 25
⇒ x = √25 = 5
∴ x = 5
(ii) log10 2x
We know that, x = 5
So, log10 2x = log10 2×5
= log10 10
= 1
20. If log x/log 5 = log y2/log 2 = log 9/log (1/3), find x and y.
Solution
Given:
log x/log 5 = log y2/log 2 = log 9/log (1/3)
let us consider,
log x/log 5 = log 9/log (1/3)
⇒ log x = (log 9×log 5)/log (1/3)
= (log 32 ×log 5)/(log 1 – log 3)
= (2 log 3×log 5)/(-log 3) [log 1 = 0]
= -2×log 5
= log 5-2
⇒ x = 5-2
= 1/52
= 1/25
Now,
log y2/log 2 = log 9/log (1/3)
⇒ log y2 = (log 9×log2)/log (1/3)
= (log 32 × log 2)/(log 1 – log 3)
= (2 log 3 × log 2)/(-log 3) [log 1 = 0]
= -2 ×log 2
= log 2-2
⇒ y2 = 2-2
= 1/22
= ¼
= √(1/4)
= ½
21. Prove the following:
(i) 3log 4 = 4log 3
(ii) 27log 2 = 8log 3
Solution
(i) 3log 4 = 4log 3
Let us take log on both sides,
If log 3log 4 = log 4log 3
log 4 .log 3 = log 3 .log 4
⇒ log 22 .log 3 = log 3 .log 22
⇒ 2 log 2 .log 3 = log 3 .2 log 2
which is true.
Hence, proved.
(ii) 27log 2 = 8log 3
Let us take log on both sides,
If log 27log 2 = log 8log 3
⇒ log 2 .log 27 = log 3. log 8
⇒ log 2 .log 33 = log 3. log 23
⇒ log 2 .3 log 3 = log 3. 3 log 2
⇒ 3 log2.log 3 = 3 log2. log 3
which is true.
Hence, proved.
22. Solve the following equations:
(i) log (2x + 3) = log 7
(ii) log (x +1) + log (x – 1) = log 24
(iii) log (10x + 5) – log (x – 4) = 2
(iv) log10 5 + log10 (5x + 1) = log10 (x + 5) + 1
(v) log (4y – 3) = log (2y + 1) – log 3
(vi) log10 (x + 2) + log10 (x – 2) = log103 + 3 log10 4
(vii) log (3x + 2) + log (3x – 2) = 5 log 2
Solution
(i) log (2x + 3) = log 7
Let us simplify the expression,
2x + 3 = 7
⇒ 2x = 7 – 3
⇒ 2x = 4
⇒ x = 4/2 = 2
(ii) log (x +1) + log (x – 1) = log 24
Let us simplify the expression,
log [(x+1) (x–1)] = log 24
⇒ log (x2–1) = log 24
⇒ (x2–1) = 24
⇒ x2 = 24 + 1 = 25
⇒ x = √25 = 5
(iii) log (10x +5) – log (x–4) = 2
Let us simplify the expression,
log (10x +5)/(x–4) = 2 log 10
⇒ log (10x+5)/(x–4) = log 102
⇒ (10x +5)/(x–4) = 100
⇒ 10x + 5 = 100 (x – 4)
⇒ 10x + 5 = 100x – 400
⇒ 5 + 400 = 100x – 10x
⇒ 90x = 405
⇒ x = 405/90
= 81/18
= 9/2
= 4.5
(iv) log105 + log10(5x +1) = log10 (x + 5) + 1
Let us simplify the expression,
log10 [5× (5x + 1)] = log10 (x + 5) + log10 10
⇒ log10 [5× (5x + 1)] = log10 [(x + 5) ×10] [5×(5x + 1)] = [(x + 5) × 10]
⇒ 25x + 5 = 10x + 50
⇒ 25x – 10x = 50 – 5
⇒ 15x = 45
⇒ x = 45/15
= 3
(v) log (4y – 3) = log (2y + 1) – log 3
Let us simplify the expression,
log (4y – 3) = log (2y + 1) / 3
⇒ (4y – 3) = (2y + 1) / 3
By cross multiplying, we get
3(4y – 3) = 2y + 1
⇒ 12y – 9 = 2y + 1
⇒ 12y – 2y = 9 + 1
⇒ 10y = 10
⇒ y = 10/10 = 1
(vi) log10 (x + 2) + log10 (x – 2) = log103 + 3 log10 4
Let us simplify the expression,
log10[(x+2)×(x–2)] = log103 + log1043
⇒ log10[(x+2)×(x–2)] = log10 (3×43)
⇒ [(x+2)×(x–2)] = (3×43)
⇒ (x2–4) = (3×4×4×4)
⇒ (x2–4) = 192
⇒ x2 = 192 + 4 = 196
⇒ x = √196 = 14
(vii) log (3x + 2) + log (3x – 2) = 5 log 2
Let us simplify the expression,
log (3x + 2) + log (3x – 2) = log 25
⇒ log [(3x + 2)×(3x – 2)] = log 32
⇒ log (9x2 – 4) = log 32
⇒ (9x2 – 4) = 32
⇒ 9x2 = 32 + 4
⇒ 9x2 = 36
⇒ x2 = 36/9
⇒ x2 = 4
⇒ x = √4 = 2
23. Solve for x:
log3 (x + 1) – 1 = 3 + log3 (x – 1)
Solution
Given:
log3 (x + 1) – 1 = 3 + log3 (x – 1)
Let us simplify the expression,
log3(x + 1) – log3(x – 1) = 3 + 1
⇒ log3(x + 1)/(x – 1) = 4 log33 [Since, log3 3 = 1]
⇒ log3(x + 1)/(x – 1) = log334
⇒ (x + 1)/(x – 1) = 34
By cross multiplying, we get
(x + 1) = 81 (x – 1)
⇒ x + 1 = 81x – 81
⇒ 81x – x = 1 + 81
⇒ 80x = 82
⇒ x = 82/80
= 41/40
24. Solve for x:
5log x + 3log x = 3log x+1 – 5log x – 1
Solution
Given:
5log x + 3log x = 3log x+1 – 5log x – 1
Let us simplify the expression,
5log x + 3log x = 3log x . 31 – 5log x . 5-1
⇒ 5log x + 3log x = 3.3log x – 1/5 . 5log x
⇒ 5log x + 1/5 . 5log x = 3.3log x – 3log x
⇒ (1 + 1/5) 5log x = (3 – 1) 3log x
⇒ (6/5) 5log x = 2(3log x)
⇒ 5log x/3log x = (2×5)/6
⇒ (5/3)log x = 10/6
⇒ (5/3)log x = 5/3
⇒ (5/3)log x = (5/3)1
So, by comparing the powers
log x = 1
⇒ log x = log 10
⇒ x = 10
25. If log (x-y)/2 = ½ (log x + log y), prove that x2 + y2 = 6xy
Solution
Given:
log (x-y)/2 = ½ (log x + log y)
Let us simplify,
log (x-y)/2 = ½ (log x×y)
⇒ log (x-y)/2 = ½ log xy
⇒ log (x-y)/2 = log (xy)1/2
⇒ (x-y)/2 = (xy)1/2
By squaring on both sides, we get
[(x-y)/2]2 = [(xy)1/2]2
⇒ (x – y)2/4 = xy
By cross multiplying, we get
(x – y)2 = 4xy
⇒ x2 + y2 – 2xy = 4xy
⇒ x2 + y2 = 4xy + 2xy
⇒ x2 + y2 = 6xy
Hence, proved.
26. If x2 + y2 = 23xy, Prove that log (x + y)/5 = ½ (log x + log y)
Solution
Given:
x2 + y2 = 23xy
So, the above equation can be written as
x2 + y2 = 25xy – 2xy
⇒ x2 + y2 + 2xy = 25xy
⇒ (x + y)2 = 25xy
⇒ (x + y)2/25 = xy
Now by taking log on both sides, we get
log [(x + y)2 / 25] = log xy
⇒ log [(x + y)/5]2 = log xy
⇒ 2 log (x+y)/5 = log x + log y
⇒ log (x+y)/5 = ½ log x + log y
Hence, proved.
27. If p = log10 20 and q = log10 25, find the value of x if 2 log10 (x + 1) = 2p – q
Solution
Given:
p = log10 20
q = log10 25
Then,
2 log10(x + 1) = 2p – q
Now substitute the values of p and q, we get
2 log10(x + 1)
= 2 log1020 – log10 25
= 2 log10 20 – log10 52
= 2 log10 20 – 2 log10 5
2 log10 (x + 1) = 2 (log10 20 – log10 5)
⇒ log10 (x + 1) = (log10 20 – log10 5) = log10 (20/5)
⇒ log10 (x + 1) = log10 4
⇒ (x + 1) = 4
⇒ x = 4 – 1 = 3
28. Show that:
(i) 1/log2 42 + 1/log3 42 + 1/log7 42 = 1
(ii) 1/log8 36 + 1/log9 36 + 1/log18 36 = 2
Solution
(i) 1/log2 42 + 1/log3 42 + 1/log7 42 = 1
Let us consider LHS:
1/log242 + 1/log342 + 1/log742
By using the formula, lognm = logm/logn
1/log242 + 1/log342 + 1/log742
= 1/(log 42/log2) + 1/(log 42/log3) + 1/(log 42/log7)
= log2/log 42 + log3/log 42 + log7/log 42
= (log2 + log3 + log7)/log 42
= (log 2×3×7)/log 42
= log 42 / log 42
= log 42/log 42
= 1
= RHS
(ii) 1/log8 36 + 1/log9 36 + 1/log18 36 = 2
Let us consider LHS:
1/log8 36 + 1/log9 36 + 1/log18 36
By using the formula, logn m = logm / logn
1/log8 36 + 1/log9 36 + 1/log18 36
= 1/(log 36/log8) + 1/(log 36/log9) + 1/(log 36/log18)
= log8/log 36 + log9/log 36 + log18/log 36
= (log8 + log9 + log18)/log 36
= (log 8×9×18)/log 36
= log 362/log 36
= 2 log 36/log 36
= 2
= RHS
29. Prove the following identities:
(i) 1/loga abc + 1/logb abc + 1/logc abc = 1
(ii) logb a. logc b. logd c = logd a
Solution
(i) 1/logaabc + 1/logbabc + 1/logcabc = 1
Let us consider LHS:
1/loga abc + 1/logb abc + 1/logc abc
By using the formula, logn m = logm / logn
1/loga abc + 1/logb abc + 1/logc abc
= 1/(log abc/loga) + 1/(log abc/logb) + 1/(log abc/logc)
= loga/log abc + logb/log abc + logc/log abc
= (loga + logb + logc)/log abc
= (log a×b×c)/log abc
= log abc/log abc
= 1
= RHS
(ii) logb a. logc b. logd c = logd a
Let us consider LHS:
logb a. logc b. logd c
= (log a/log b) × (log b/log c) × (log c/log d)
= log a/log d
= logd a
= RHS
30. Given that loga x = 1/ α, logb x = 1/β, logc x = 1/γ, find logabc x.
Solution
It is given that:
loga x = 1/ α, logb x = 1/β, logc x = 1/γ
So,
loga x = 1/ α ⇒ log x/loga = 1/ α ⇒ loga = α log x
logb x = 1/β ⇒ log x/logb = 1/ β ⇒ logb = β log x
logc x = 1/γ ⇒ log x/logc = 1/ γ ⇒ logc = γ log x
Now,
logabc x = log x/log abc
= log x/(log a + log b + log c)
= log x/(α log x + β log x + γ log x)
= log x/log x(α+ β+ γ)
= 1/(α+ β+ γ)
31. Solve for x:
(i) log3 x + log9 x + log81 x = 7/4
(ii) log2 x + log8 x + log32 x = 23/15
Solution
(i) log3 x + log9 x + log81 x = 7/4
let us simplify the expression,
1/logx 3 + 1/logx 9 + 1/logx 81 = 7/4
⇒ 1/logx 31 + 1/logx 32 + 1/logx 34 = 7/4
⇒ 1/logx 3 + 1/2logx 3 + 1/4logx 3 = 7/4
⇒ 1/logx 3 [1 + ½ + ¼] = 7/4
⇒ 1/logx 3 [(4+2+1)/4] = 7/4
⇒ log3 x [7/4] = 7/4
⇒ log3 x = (7/4) × (4/7)
⇒ log3 x = 1
log3 x = log3 3 [Since, 1= loga a]
On comparing, we get
x = 3
(ii) log2 x + log8 x + log32 x = 23/15
let us simplify the expression,
1/logx 2 + 1/logx 8 + 1/logx 32 = 23/15
⇒ 1/logx 21 + 1/logx 23 + 1/logx 25 = 23/15
⇒ 1/logx 2 + 1/3logx 2 + 1/5logx 2 = 23/15
⇒ 1/logx 2 [1 + 1/3 + 1/5] = 23/15
⇒ log2 x [(15 + 5 + 3)/15] = 23/15
⇒ log2 x [23/15] = 23/15
⇒ log2 x = (23/15) × (15/23)
⇒ log2 x = 1
⇒ log2 x = log2 2 [Since, 1= loga a]
On comparing, we get
x = 2