ML Aggarwal Solutions for Chapter 18 Trigonometric Ratios and Standard Angles Class 9 Maths ICSE
Exercise 18.1
1. Find the values of
(i) 7 sin 30° cos 60°
(ii) 3 sin2 45° + 2 cos2 60°
(iii) cos2 45° + sin2 60° + sin2 30°
(iv) cos 90° + cos2 45° sin 30° tan 45°.
Solution
(i) 7 sin 30° cos 60°
Substituting the values
= 7 ×½ ×½
= (7×1×1)/(2×2)
= 7/4
(ii) 3 sin2 45° + 2 cos2 60°
Substituting the values
= 3×(1/√2)2 + [2×(1/2)2]
By further calculation
= (3×½) + (2 × ¼)
= 3/2 + ½
So we get
= (3 + 1)/2
= 4/2
= 2
(iii) cos2 45° + sin2 60° + sin2 30°
Substituting the values
= (1/√2)2 + (√3/2)2 + (1/2)2
By further calculation
= ½ + ¾ + ¼
Taking LCM
= (2 + 3 + 1)/4
= 6/4
= 3/2
(iv) cos 90° + cos2 45° sin 30° tan 45°
Substituting the values
= 0 + (1/√2)2 × ½ × 1
By further calculation
= ½ × ½ × 1
= ¼
2. Find the values of
(i) (sin245° + cos245°)/tan260°
(ii) (sin30° - sin90° + 2cos0°)/tan2 60°
(iii) 4/3 tan230° + sin260° - 3cos260° + 3/4 tan260° - 2tan245°
Solution
(iii) 4/3 tan230° + sin260° - 3cos260° + ¾tan260° - 2tan245°
Substituting the values
= 4/3(1/√3)2 + (√3/2)2 – 3(1/2)2 + ¾×(√3)2 – 2×12
By further calculation
= (4/3× 1/3) + ¾ – (3 × ¼) + (¾ ×3) – (2×1)
= 4/9 + ¾ – 3/4 + 9/4 – 2
So we get
= 4/9 + 9/4 – 2
Taking LCM
= (16 + 81 – 72)/36
= (97 – 72)/36
= 25/36
3. Find the values of
(i) (sin30°/cos245°) - 3tan30° + 5cos90°
(ii) 2√2 cos45° cos60° + 2√3 sin30° tan60° - cos30°
(iii) 4/5 tan260° - (2/sin230°) - 3/4 tan230°
Solution
(ii) 2√2 cos 45° cos 60° + 2√3 sin 30° tan 60° – cos 0°
Substituting the values
= 2√2 × 1/√2 × ½ + 2√3 × ½ × √3 – 1
By further calculation
= 2 × 1/1 × 1/2 + 2 × 3 × ½ – 1
= 1 + 3 – 1
= 3
4. Prove that
(i) cos2 30° + sin 30° + tan2 45° = 2 ¼
(ii) 4 (sin4 30° + cos4 60°) – 3 (cos2 45° – sin2 90°) = 2
(iii) cos 60° = cos2 30° – sin2 30°.
Solution
(i) cos2 30° + sin 30° + tan2 45° = 2 ¼
Consider
LHS = cos2 30° + sin 30° + tan2 45°
Substituting the values
= (√3/2)2 + ½ + 12
By further calculation
= ¾ + ½ + 1
Taking LCM
= (3 + 2 + 4)/4
= 9/4
= 2 ¼
= RHS
Therefore, LHS = RHS.
(ii) 4 (sin4 30° + cos4 60°) – 3 (cos2 45° – sin2 90°) = 2
Consider
LHS = 4 (sin4 30° + cos4 60°) – 3 (cos2 45° – sin2 90°)
Substituting the values
= 4[(½)4 + (½)4] – 3 [(1/√2)2 – 12]
It can be written as
= 4[½ × ½ × ½ × ½ + ½ × ½ × ½ × ½] – 3 [½ – 1]
By further calculation
= 4 [1/16 + 1/16] – 3 (- ½)
= 4[(1 + 1)/16] + 3/2
So we get
= (4 × 3)/16 + 3/2
= 8/16 + 3/2
= ½ + 3/2
= (1 + 3)/2
= 4/2
= 2
= RHS
Therefore, LHS = RHS.
(iii) cos 60° = cos2 30° – sin2 30°
Consider
LHS = cos 60° = ½
RHS = cos2 30° – sin2 30°
Substituting the values
= (√3/2)2 + (1/2)2
By further calculation
= ¾ – ¼
= (3 – 1)/4
= 2/4
= ½
= RHS
Therefore, LHS = RHS.
5. (i) If x = 30°, verify that tan 2x = 2tanx/ (1- tan2 x).
(ii) If x = 15°, verify that 4 sin 2x cos 4x sin 6x = 1.
Solution
(i) It is given that
x = 30°
Consider LHS = tan 2x
Substituting the value of x
= tan 60°
= √3
Therefore, LHS = RHS.
(ii) It is given that
x = 15°
2x = 15 × 2 = 30°
4x = 15 × 4 = 60°
6x = 15 × 6 = 90°
Here
LHS = 4 sin 2x cos 4x sin 6x
It can be written as
= 4 sin 30° cos 60° sin 90°
So we get
= 4 × ½ × ½ × 1
= 1
= RHS
Therefore, LHS = RHS.
6. Find the values of
Solution
7. If θ = 30°, verify that
(i) sin 2θ = 2 sin θ cos θ
(ii) cos 2θ = 2 cos2 θ – 1
(iii) sin 3θ = 3 sin θ – 4 sin3 θ
(iv) cos 3θ = 4 cos3 θ – 3 cos θ.
Solution
It is given that θ = 30°
(i) sin 2θ = 2 sin θ cos θ
Consider
LHS = sin 2θ
Substituting the value of θ
= sin 2 × 30°
= sin 60°
= √3/2
RHS = 2 sin θ cos θ
Substituting the value of θ
= 2 sin 30° cos 30°
So we get
= 2 × ½ × √3/2
= 1 × √3/2
= √3/2
Therefore, LHS = RHS.
(ii) cos 2θ = 2 cos2θ – 1
Consider
LHS = cos 2θ
Substituting the value of θ
= cos 2 × 30°
= cos 60°
= ½
RHS = 2 cos2 θ – 1
Substituting the value of θ
= 2 cos2 30° – 1
So we get
= 2 (√3/2)2 – 1
= 2 × ¾ – 1
= 3/2 – 1
= (3 – 2)/2
= ½
Therefore, LHS = RHS.
(iii) sin 3θ = 3 sin θ – 4 sin3 θ
Consider
LHS = sin 3θ
Substituting the value of θ
= sin 3 × 30°
= sin 90°
= 1
RHS = 3 sin θ – 4 sin3 θ
Substituting the value of θ
= 3 sin 30° – 4 sin3 30°
So we get
= (3×½) – 4×(1/2)3
= 3/2 – 4× 1/8
= 3/2 – ½
Taking LCM
= (3 – 1)/2
= 2/2
= 1
Therefore, LHS = RHS.
(iv) cos 3θ = 4 cos3 θ – 3 cos θ
Consider
LHS = cos 3θ
Substituting the value of θ
= cos 3 × 30°
= cos 90°
= 0
RHS = 4 cos3 θ – 3 cos θ
Substituting the value of θ
= 4 cos3 30° – 3 cos 30°
So we get
= 4×(√3/2)3 – 3×(√3/2)
By further calculation
= 4× 3√3/8 – 3√3/2
= 3√3/2 – 3√3/2
= 0
Therefore, LHS = RHS.
8. If θ = 30°, find the ratio 2 sin θ: sin 2 θ.
Solution
It is given that θ = 30°
We know that
2 sin θ: sin 2θ = 2sin 30°: sin(2×30°)
So we get
= 2 sin 30°: sin 60°
= 2 sin 30°/sin 60°
Substituting the values
= 2: √3
Therefore, 2 sin θ: sin 2θ = 2: √3.
9. By means of an example, show that sin (A + B) ≠ sin A + sin B.
Solution
Consider A = 30° and B = 60°
LHS = sin (A + B)
Substituting the values of A and B
= sin (30° + 60°)
= sin 90°
= 1
RHS = sin A + sin B
Substituting the values
= sin 30° + sin 60°
So we get
= ½ + √3/2
= (1 + √3)/2
Therefore, LHS ≠ RHS i.e. sin (A + B) ≠ sin A + sin B.
10. If A = 60° and B = 30°, verify that
(i) sin (A + B) = sin A cos B + cos A sin B
(ii) cos (A + B) = cos A cos B – sin A sin B
(iii) sin (A – B) = sin A cos B – cos A sin B
(iv) tan (A – B) = (tan A – tan B)/ (1 + tan A tan B).
Solution
It is given that A = 60° and B = 30°
(i) sin (A + B) = sin A cos B + cos A sin B
Here
LHS = sin (A + B)
Substituting the values of A and B
= sin (60° + 30°)
= sin 90°
= 1
RHS = sin A cos B + cos A sin B
Substituting the values of A and B
= sin 60° cos 30° + cos 60° sin 30°
So we get
= (√3/2 × √3/2) + (½ × ½)
By further calculation
= ¾ + ¼
= 4/4
= 1
Therefore, LHS = RHS.
(ii) cos (A + B) = cos A cos B – sin A sin B
Here
LHS = cos (A + B)
Substituting the value of A and B
= cos (60° + 30°)
= cos 90°
= 0
RHS = cos A cos B – sin A sin B
Substituting the value of A and B
= cos 60° cos 30° – sin 60° sin 30°
So we get
= (½× √3/2) – √3/2 + ½
= √3/4 – √3/4
= 0
Therefore, LHS = RHS.
(iii) sin (A – B) = sin A cos B – cos A sin B
Here
LHS = sin (A – B)
Substituting the values of A and B
= sin (60° – 30°)
= sin 30°
= ½
RHS = sin A cos B – cos A sin B
Substituting the values of A and B
= sin 60° cos 30° – cos 60° sin 30°
So we get
= (√3/2 × √3/2) – (½ × ½)
= ¾ – ¼
= (3 – 1)/ 4
= 2/4
= ½
Therefore, LHS = RHS.
(iv) tan (A – B) = (tan A – tan B)/ (1 + tan A tan B)
Here
LHS = tan (A – B)
Substituting the values of A and B
= tan (60° – 30°)
= tan 30°
= 1/√3
RHS = (tan A – tan B)/ (1 + tan A tan B)
Substituting the values of A and B
= (tan 60° – tan 30°)/(1 + tan 60° tan 30°)
So we get
We get
= 2/√3 × ½
= 1/√3
Therefore, LHS = RHS.
11. (i) If 2θ is an acute angle and 2 sin 2θ = √3, find the value of θ.
(ii) If 20° + x is an acute angle and cos (20° + x) = sin 60°, then find the value of x.
(iii) If 3 sin2 θ = 2 ¼ and θ is less than 90°, find the value of θ.
Solution
(i) It is given that
2θ is an acute angle
2 sin 2θ = √3
It can be written as
sin 2θ = √3/2 = sin 60°
By comparing
2θ = 60°
So we get
θ = 60°/2 = 30°
Therefore, θ = 30°
(ii) It is given that
20° + x is an acute angle
cos (20° + x) = sin 60°
It can be written as
cos (20° + x) = sin 60° = cos (90° – 60°)
= cos 30°
By comparing
20° + x = 30°
⇒ x = 30° – 20° = 10°
Therefore, x = 100.
(iii) It is given that
3 sin2 θ = 2 ¼
θ is less than 90°
We can write it as
sin2 θ = 9/(4 × 3) = ¾
So we get
sin θ = √3/2 = sin 60°
By comparing
θ = 60°
Therefore, θ = 60°.
12. If θ is an acute angle and sin θ = cos θ, find the value of θ and hence, find the value of 2 tan2 θ + sin2 θ – 1.
Solution
It is given that
sin θ = cos θ
We can write it as
sin θ/cos θ = 1
tan θ = 1
We know that tan 45° = 1
tan θ = tan 45°
So we get
θ = 45°
We know that
2 tan2 θ + sin2 θ – 1 = 2 tan2 45° + sin2 45° – 1
Substituting the values
= 2 (1)2 + (1/√2)2 – 1
By further calculation
= (2×1×1) + ½ – 1
= 2 + ½ – 1
= 5/2 – 1
Taking LCM
= (5 – 2)/2
= 3/2
Therefore, 2 tan2 θ + sin2 θ – 1 = 3/2.
13. From the adjoining figure, find
(i) tan x°
(ii) x
(iii) cos x°
(iv) use sin x° to find y.
Solution
(i) tan x° = perpendicular/base
It can be written as
= AB/BC
= √3/1
= √3
(ii) tan x° = √3
We know that tan 60° = √3
tan x° = tan 60°
x = 60
(iii) We know that
cos x° = cos 60°
So we get
cos x° = ½
(iv) sin x° = perpendicular/hypotenuse = AB/AC
Substitute x = 60 from (ii)
sin 60° = √3/y
We know that sin 60° = √3/2
√3/2 = √3/y
By further calculation
y = (√3×2)/√3
y = (2×1)/1 = 2
Therefore, y = 2.
14. If 3θ is an acute angle, solve the following equations for θ:
(i) 2 sin 3θ = √3
(ii) tan 3θ = 1.
Solution
(i) 2 sin 3θ = √3
It can be written as
sin 3θ = √3/2
We know that sin 60° = √3/2
sin 3θ = sin 60°
⇒ 3θ = 60°
So we get
θ = 60/3 = 20°
(ii) tan 3θ = 1
We know that tan 45° = 1
tan 3θ = tan 45°
So we get
3θ = 45°
⇒ θ = 15°
15. If tan 3x = sin 45° cos 45° + sin 30°, find the value of x.
Solution
We know that
tan 3x = sin 45° cos 45° + sin 30°
Substituting the values
= (1/√2 × 1/√2) + ½
= ½ + ½
= 1
We know that
tan 3x = tan 45°
By comparing
3x = 45°
x = 45/3 = 15°
Therefore, the value of x is 15°.
16. If 4 cos2 x° – 1 = 0 and 0 ≤ x ≤ 90, find
(i) x
(ii) sin2 x° + cos2 x°
(iii) cos2 x° – sin2 x°
Solution
It is given that
4 cos2 x° – 1 = 0
⇒ 4cos2 x° = 1
It can be written as
cos2 x° = ¼
⇒ cos x° = ± √1/4
⇒ cos x° = + √1/4 [0 ≤ x ≤ 90°, then cos x° is positive]
⇒ cos x° = ½
We know that cos 60° = ½
cos x° = cos 60°
By comparing
x = 60
(ii) sin2 x° + cos2 x° = sin2 60° + cos2 60°
Substituting the values
= (√3/2)2 + (1/2)2
By further calculation
= ¾ + ¼
= (3 + 1)/4
= 4/4
= 1
Therefore, sin2 x° + cos2 x° = 1.
(iii) cos2 x° – sin2 x° = cos2 60° – sin2 60°
Substituting the values
= (1/2)2 – (√3/2)2
By further calculation
= ¼ – (√3/2 × √3/2)
= ¼ – ¾
= (1 – 3)/4
= -2/4
= – ½
Therefore, cos2 x° – sin2 x° = – ½.
17. (i) If sec θ = cosec θ and 0° ≤ θ ≤ 90°, find the value of θ.
(ii) If tan θ = cot θ and 0° ≤ θ ≤ 90°, find the value of θ
Solution
(i) It is given that
sec θ = cosec θ
We know that
sec θ = 1/cos θ
cosec θ = 1/sin θ
So we get
1/cos θ = 1/sin θ
⇒ sin θ/cos θ = 1
⇒ tan θ = 1
Here tan 45° = 1
tan θ = tan 45°
θ = 45°
(ii) It is given that
tan θ = cot θ
We know that cot θ = 1/tan θ
tan θ = 1/tan θ
So we get
tan2 θ = 1
⇒ tan θ = ± √1
⇒ tan θ = + 1 [0 ≤ θ ≤ 90°, tan θ is positive]
⇒ tan θ = tan 45°
By comparing
θ = 45°
18. If sin 3x = 1 and 0° ≤ 3x ≤ 90°, find the values of
(i) sin x
(ii) cos 2x
(iii) tan2 x – sec2 x.
Solution
It is given that
sin 3x = 1
We know that sin 90° = 1
sin 3x = sin 90°
By comparing
3x = 90
⇒ x = 90/3
⇒ x = 30°
(i) sin x = sin 30° = 1/2
(ii) cos 2x = cos 2 × 30 = cos 60° = 1/2
(iii) tan2 x – sec2 x = tan2 30° – sec2 30°
Substituting the values
= (1/√3)2 – (2/√3)2
By further calculation
= 1/3 – 4/3
= (1 – 4)/3
= – 3/3
= -1
Therefore, tan2 x – sec2 x = – 1.
19. If 3 tan2 θ – 1 = 0, find cos 2θ, given that θ is acute.
Solution
It is given that
3 tan2 θ – 1 = 0
We can write it as
3 tan2 θ = 1
⇒ tan2 θ = 1/3
⇒ tan θ = 1/√3 [θ is acute so tan θ is positive]
θ = 30°
So we get
cos 2θ = cos 2 × 30° = cos 60° = ½
20. If sin x + cos y = 1, x = 30° and y is acute angle, find the value of y.
Solution
It is given that
sin x + cos y = 1
x = 30°
Substituting the values
sin 30° + cos y = 1
⇒ 1/2 + cos y = 1
It can be written as
cos y = 1 – ½
Taking LCM
cos y = (2 – 1)/2 = ½
We know that cos 60° = ½
cos y = cos 60°
So we get
y = 60°
21. If sin (A + B) = √3/2 = cos (A – B), 0° < A + B ≤ 90° (A > B), find the values of A and B.
Solution
It is given that
sin (A + B) = √3/2 = cos (A – B)
Consider
sin (A + B) = √3/2
We know that sin 60 = √3/2
sin (A + B) = sin 60°
A + B = 60° ...(1)
Similarly
cos (A – B) = √3/2
We know that cos 30° = √3/2
cos (A – B) = cos 30°
A – B = 30° …(2)
By adding both the equations
A + B + A – B = 60° + 30°
So we get
2A = 90°
⇒ A = 90°/2 = 45°
Now substitute the value of A in equation (1)
45° + B = 60°
By further calculation
B = 60° – 45° = 15°
Therefore, A = 45° and B = 15°.
22. If the length of each side of a rhombus is 8 cm and its one angle is 60°, then find the lengths of the diagonals of the rhombus.
Solution
It is given that
Each side of a rhombus = 8 cm
One angle = 60°
We know that the diagonals bisect the opposite angles
∠OAB = 60°/2 = 30°
In right ∠AOB
sin 30° = OB/AB
So we get
½ = OB/8
By further calculation
OB = 8/2 = 4 cm
BD = 2OB = 2 × 4 = 8 cm
cos 30° = AO/AB
Substituting the values
√3/2 = AO/8
By further calculation
AO = 8√3/2 = 4√3
Here
AC = 4√3 × 2 = 8 √3 cm
Therefore, the length of the diagonals of the rhombus are 8 cm and 8√3 cm.
23. In the right-angled triangle ABC, ∠C = 90° and ∠B = 60°. If AC = 6 cm, find the lengths of the sides BC and AB.
Solution
In the right-angled triangle ABC, ∠C = 90° and ∠B = 60°
AC = 6 cm
We know that
tan B = AC/BC
Substituting the values
tan 60° = 6/BC
So we get
√3 = 6/BC
⇒ BC = 6/√3
It can be written as
= 6√3/(√3+√3)
= 6√3/3
= 2√3 cm
sin 60° = AC/AB
Substituting the values
√3/2 = 6/AB
By further calculation
AB = (6×2)/√3
So we get
AB = (12×√3)/(√3×√3)
= 12√3/3
= 4√3 cm
Therefore, the lengths of the sides BC = 2√3 cm and AB = 4√3 cm.
24. In the adjoining figure, AP is a man of height 1.8 m and BQ is a building 13.8 m high. If the man sees the top of the building by focusing his binoculars at an angle of 30° to the horizontal, find the distance of the man from the building.
Solution
It is given that
Height of man AP = 1.8 m
Height of building BQ = 13.8 m
Angle of elevation from the top of the building to the man = 30°
Consider AB as the distance of the man from the building
AB = x then PC = x
QC = 13.8 – 1.8 = 12 m
In right △ PQC
tan θ = QC/PC
Substituting the values
tan 30° = 12/x
By further calculation
1/√3 = 12/x
x = 12 √3 m
Therefore, the distance of the man from the building is 12 √3 m.
25. In the adjoining figure, ABC is a triangle in which ∠B = 45° and ∠C = 60°. If AD ⟂ BC and BC = 8 m, find the length of the altitude AD.
Solution
In triangle ABC
∠B = 45° and ∠C = 60°
AD ⟂ BC and BC = 8 m
In right △ ABD
tan 45° = AD/BD
So we get
1 = AD/BD
AD = BD
In right △ ACD
tan 60° = AD/DC
So we get
√3 = AD/DC
⇒ DC = AD/√3
Here
BD + DC = AD + AD/√3
Taking LCM,
BC = (√3AD + AD)/ √3
⇒ 8 = [AD (√3 + 1)]/ √3
By further calculation
AD = 8√3/(√3 + 1)
It can be written as
= 4 (3 – √3) m
Therefore, the length of the altitude AD is 4 (3 – √3) m.
Exercise 18.2
Without using trigonometric tables, evaluate the following (1 to 5):
1. (i) cos 18°/sin 72°
(ii) tan 41°/cot 49°
(iii) cosec 17°30’/sec 72°30’
Solution
(i) cos 18°/sin 72°
It can be written as
= cos 18°/sin (90° – 18°)
So we get,
= cos 18°/cos 18°
= 1
(ii) tan 41°/cot49°
It can be written as
= tan 41°/cot (90° – 41°)
So we get
= tan 41°/tan 41°
= 1
(iii) cosec 17°30’/sec 72°30’
It can be written as
= cosec 17°30’/sec (90° – 17°30’)
So we get
= cosec 17°30’/cosec 17°30’
= 1
2. (i) cot 40°/tan 50° – ½ (cos 35°/sin 55°)
(ii) (sin 49°/cos 41°)2 + (cos 41°/sin 49°)2
(iii) sin 72°/cos 18° – sec 32°/cosec 58°
(iv) cos 75°/sin 15° + sin 12°/cos 78°– cos 18°/sin 72°
(v) sin 25°/sec 65° + cos 25°/ cosec 65°.
Solution
(i) cot 40°/tan 50° – ½ (cos 35°/sin 55°)
It can be written as
(ii) (sin 49°/cos 41°)2 + (cos 41°/sin 49°)2
It can be written as
So we get
= 12 + 12
= 1 + 1
= 2
(iii) sin 72°/cos 18° – sec 32°/cosec 58°
It can be written as
= 1 – 1
= 0
(iv) cos 75°/sin 15° + sin 12°/ cos 78° – cos 18°/sin 72°
It can be written as
So we get
= 1 + 1 – 1
= 1
(v) sin 25°/sec 65° + cos 25°/ cosec 65°
It can be written as
= (sin 25° × cos 65°) + (cos 25° × sin 65°)
By further calculation
= [sin 25° × cos (90°– 25°)] + [cos 25° × sin (90° – 25°)]
So we get
= (sin 25°× sin 25°) + (cos 25° × cos 25°)
= sin2 25° + cos2 25°
= 1
3. (i) sin 62° – cos 28°
(ii) cosec 35° – sec 55°.
Solution
(i) sin 62° – cos 28°
It can be written as
= sin (90° – 28°) – cos 28°
So we get
= cos 28° – cos 28°
= 0
(ii) cosec 35° – sec 55°
It can be written as
= cosec 35° – sec (90° – 35°)
So we get
= cosec 35° – cosec 35°
= 0
4. (i) cos2 26° + cos 64° sin 26° + tan 36°/ cot 54°
(ii) sec 17°/cosec 73° + tan 68°/cot 22° + cos2 44° + cos2 46°.
Solution
(i) cos2 26° + cos 64° sin 26° + tan 36°/ cot 54°
It can be written as
= cos2 26° + cos (90° – 26°) sin 26° + tan 36°/cot (90° – 36°)
We know that
cos (90° – θ) = sin θ
cot (90° – θ) = tan θ
sin2 θ + cos2 θ = 1
So we get
= cos2 26° + sin2 26° + tan 36°/tan 36°
= 1 + 1
= 2
(ii) sec 17°/cosec 73° + tan 68°/cot 22° + cos2 44° + cos2 46°
It can be written as
= sec (90° – 73°)/cosec 73° + tan (90° – 22°)/cot 22° + cos2 (90° – 46°) + cos2 46°
By further calculation
= cosec 73°/cosec 73° + cot 22°/cot 22° + sin2 46° + cos2 46°
We know that sin2 θ + cos2 θ = 1
So we get
= 1 + 1 + 1
= 3
5. (i) cos 65°/sin 25° + cos 32°/sin 58° – sin 28° sec 62° + cosec2 30°
(ii) sec 29°/ cosec 61° + 2 cot 8° cot 17° cot 45° cot 73° cot 82° – 3 (sin2 38° + sin2 52°).
Solution
(i) cos 65°/sin 25° + cos 32°/sin 58° – sin 28° sec 62° + cosec2 30°
It can be written as
= cos 65°/sin (90° – 65°) + cos 32°/sin (90°–32°) – sin 28° sec (90°–28°) + cosec2 30°
By further calculation
= cos 65°/cos 65° + cos 32°/cos 32° – sin 28° cosec 28° + cosec2 30°
We know that cosec 30° = 2
= 1 + 1 – 1 + 4
= 5
(ii) sec 29°/cosec 61° + 2 cot8° cot17° cot45° cot73° cot82° – 3 (sin2 38° + sin2 52°)
It can be written as
= sec 29°/cosec (90° – 29°) + 2 cot8° cot17° cot45° cot (90°–17°) cot (90°–8°) – 3 [sin238° + sin2 (90°–38°)]
By further calculation
= sec 29°/sec 29° + (2 cot8° cot17° × 1 × tan17° tan8°) – 3 (sin2 38° + cos2 38°)
So we get
= 1 + (2 cot 8° tan 8° cot 17° tan 17° × 1) – (3 × 1)
We know that
cosec (90° – θ) = sec θ
⇒ cot (90° – θ) = tan θ
⇒ sin2 θ + cos2 θ = 1
Here
= 1 + (2 × 1 × 1 × 1) – 3
= 1 + 2 – 3
= 0
6. Express each of the following in terms of trigonometric ratios of angles between 0° to 45°:
(i) tan 81° + cos 72°
(ii) cot 49° + cosec 87°.
Solution
(i) tan 81° + cos 72°
It can be written as
= tan (90° – 9°) + cos (90° – 18°)
So we get
= cot 9° + sin 18°
(ii) cot 49° + cosec 87°
It can be written as
= cot (90° – 41°) + cosec (90° – 3°)
So we get
= tan 41° + sec 3°
Without using trigonometric tables, prove that (7 to 11):
7. (i) sin2 28° – cos2 62° = 0
(ii) cos2 25° + cos2 65° = 1
(iii) cosec2 67° – tan2 23° = 1
(iv) sec2 22° – cot2 68° = 1.
Solution
(i) sin2 28° – cos2 62° = 0
Consider
LHS = sin2 28° – cos2 62°
It can be written as
= sin2 28° – cos2 (90° – 28°)
So we get
= sin2 28° – sin2 28°
= 0
= RHS
(ii) cos2 25° + cos2 65° = 1
Consider
LHS = cos2 25° + cos2 65°
It can be written as
= cos2 25° + cos2 (90° – 25°)
We know that sin2 θ + cos2 θ = 1
So we get
= cos2 25° + sin2 25°
= 1
(iii) cosec2 67° – tan2 23° = 1
Consider
LHS = cosec2 67° – tan2 23°
It can be written as
= cosec2 67° – tan2 (90° – 67°)
We know that cosec2 θ – cot2 θ = 1
So we get
= cosec2 67° – cot2 67°
= 1
(iv) sec2 22° – cot2 68° = 1
Consider
LHS = sec2 22° – cot2 68°
It can be written as
= sec2 22° – cot2 (90° – 22°)
We know that sec2 θ – tan2 θ = 1
So we get
= sec2 22° – tan2 22°
= 1
8. (i) sin 63° cos 27° + cos 63° sin 27° = 1
(ii) sec 31° sin 59° + cos 31° cosec 59° = 2.
Solution
(i) sin 63° cos 27° + cos 63° sin 27° = 1
Consider
LHS = sin 63° cos 27° + cos 63° sin 27°
It can be written as
= sin 63° cos (90° – 63°) + cos 63° sin (90° – 63°)
= sin 63° sin 63° + cos 63° cos 63°
We know that sin2 θ + cos2 θ = 1
So we get
= sin2 63° + cos2 63°
= 1
(ii) sec 31° sin 59° + cos 31° cosec 59° = 2
Consider
LHS = sec 31° sin 59° + cos 31° cosec 59°
It can be written as
= 1/cos 31° × sin 59° + (cos 31° × 1/sin 59°)
By further calculation
= sin 59°/cos (90° – 59°) + cos 31°/sin (90° – 31°)
So we get
= sin 59°/sin 59° + cos 31°/cos 31°
= 1 + 1
= 2
= RHS
9. (i) sec 70° sin 20° – cos 20° cosec 70° = 0
(ii) sin2 20° + sin2 70° – tan2 45° = 0.
Solution
(i) sec 70° sin 20° – cos 20° cosec 70° = 0
Consider
LHS = sec 70° sin 20° – cos 20° cosec 70°
By further simplification
= sin 20°/cos 70° – cos 20°/sin 70°
It can be written as
= sin 20°/cos (90° – 20°) – cos 20°/sin (90° – 20°)
So we get
= sin 20°/sin 20° – cos 20°/cos 20°
= 1 – 1
= 0
= RHS
(ii) sin2 20° + sin2 70° – tan2 45° = 0
Consider
LHS = sin2 20° + sin2 70° – tan2 45°
It can be written as
= sin2 20° + sin2 (90° – 20°) – tan2 45°
By further calculation
= sin2 20° + cos2 20° – tan2 45°
We know that sin2 θ + cos2 θ = 1 and tan 45° = 1
So we get
= 1 – 1
= 0
= RHS
10. (i) cot 54°/tan 36° + tan 20°/cot 70° – 2 = 0
(ii) sin 50°/cos 40° + cosec 40°/sec 50° – 4 cos 50° cosec 40° + 2 = 0.
Solution
(i) cot 54°/tan 36° + tan 20°/cot 70° – 2 = 0
Consider
LHS = cot 54°/tan 36° + tan 20°/cot 70° – 2
It can be written as
= cot 54°/tan (90° – 54°) + tan 20°/cot (90° – 20°) – 2
By further calculation
= cot 54°/ cot 54° + tan 20°/ tan 20° – 2
So we get
= 1 + 1 – 2
= 0
= RHS
(ii) sin 50°/cos 40° + cosec 40°/sec 50° – 4 cos 50° cosec 40° + 2 = 0
Consider
LHS = sin 50°/cos 40° + cosec 40°/sec 50° – 4 cos 50° cosec 40° + 2
It can be written as
= sin 50°/cos (90° – 50°) + cosec 40°/sec (90° – 40°) – 4 cos 50° cosec (90° – 50°) + 2
By further calculation
= sin 50°/sin 50° + cosec 40°/cosec 40° – cos 50° sec 50° + 2
So we get
= 1 + 1 – (4 cos50°/cos 50°) + 2
= 1 + 1 – 4 + 2
= 4 – 4
= 0
= RHS
11. (i) cos 70°/sin 20° + cos 59°/sin 31° – 8 sin2 30° = 0
(ii) cos 80°/sin 10° + cos 59° cosec 31° = 2.
Solution
(i) cos 70°/sin 20° + cos 59°/sin 31° – 8 sin2 30° = 0
Consider
LHS = cos 70°/sin 20° + cos 59°/sin 31° – 8 sin2 30°
It can be written as
= cos 70°/sin (90° – 70°) + cos 59°/sin (90° – 59°) – 8 sin2 30°
We know that sin 30° = ½
= cos 70°/cos 70° + cos 59°/ cos 59° – 8 (1/2)2
By further calculation
= 1 + 1 – (8 × ¼)
So we get
= 2 – 2
= 0
= RHS
(ii) cos 80°/sin 10° + cos 59° cosec 31° = 2
Consider
LHS = cos 80°/sin 10° + cos 59° cosec 31°
It can be written as
= cos 80°/sin (90° – 80°) + cos 59°/ sin 31°
By further simplification
= cos 80°/ cos 80° + cos 59°/ sin (90° – 59°)
So we get
= 1 + cos 59°/ cos 59°
= 1 + 1
= 2
= RHS
12. Without using trigonometrical tables, evaluate:
(iii) sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°.
Solution
So we get
= 2 + 1 – 3
= 0
We know that sin2 θ + cos2 θ = 1 and cosec2 θ – cot2 θ = 1
= 1/1
= 1
(iii) sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
It can be written as
= sin2 34° + [sin (90° – 34°)]2 + 2 tan 18° tan (90° – 18°) – cot2 30°
By further simplification
= sin2 34° + cos2 34° + 2 tan 18° cot 18° – (√3)2
So we get
= 1 + (2 tan 18°× 1/tan 18°) – 3
= 1 + 2 – 3
= 0
13. Prove the following:
Solution
We know that
So we get
= cos θ/cos θ + sin θ/sin θ
= 1 + 1
= 2
= RHS
(ii) cos θ sin (90° – θ) + sin θ cos (90° – θ) = 1
Consider
LHS = cos θ sin (90° – θ) + sin θ cos (90° – θ)
It can be written as
= cos θ. cos θ + sin θ. sin θ
So we get
= cos2 θ + sin2 θ
= 1
= RHS
Consider
LHS =
By further calculation
= tan θ/cot θ + cos θ/cos θ
So we get
= (tan θ × tan θ) + 1
= tan2 θ + 1
= sec2 θ
= RHS
14. Prove the following:
Solution
Consider
It can be written as
= sin A cos A/cot A
So we get
= (sin A cos A × sin A)/cos A
= sin2 A
= 1 – cos2 A
= RHS
Consider
LHS =
It can be written as
= cos A/sec A + sin A/cosec A
So we get
= (cos A × cos A) + (sin A × sin A)
= cos2 A + sin2 A
= 1
= RHS
15. Simplify the following:
Solution
It can be written as
= cos θ/cos θ + sin θ/cosec θ – 3 tan2 300
By further calculation
= 1 + (sin θ × sin θ) – 3 (1/√3)2
So we get
= sin2 θ + 1 – (3 × 1/3)
= sin2 θ + 1 – 1
= sin2 θ
It can be written as
= (sec θ cos θ tan θ)/(sin θ cosec θ tan θ) + cot θ/cot θ
So we get
= sec θ cos θ/sin θ cosec θ + 1
= 1/1 + 1
= 1 + 1
= 2
16. Show that
Solution
Consider
We know that cos (90° – θ) = sin θ, tan (90° – θ) = cot θ and tan θ cot θ = 1
So we get
= 1/1
= 1
= RHS
17. Find the value of A if
(i) sin 3A = cos (A – 6°), where 3A and A – 6° are acute angles
(ii) tan 2A = cot (A – 18°), where 2A and A – 18° are acute angles
(iii) If sec 2A = cosec (A – 27°) where 2A is an acute angle, find the measure of ∠A.
Solution
(i) sin 3A = cos (A – 6°), where 3A and A – 6° are acute angles
It is given that
sin 3A = cos (A – 6°)
We know that cos (90° – θ) = sin θ
cos (90° – 3A) = cos (A – 6°)
By comparing both
90° – 3A = A – 6°
By further calculation
90° + 6° = A + 3A
⇒ 96° = 4A
So we get
A = 96°/4 = 24°
Hence, the value of A is 24°.
(ii) tan 2A = cot (A – 18°)
We know that cot (90° – θ) = tan θ
cot (90° – 2A) = cot (A – 18°)
By comparing both
90° – 2A = A – 18°
By further calculation
90° + 18° = A + 2A
So we get
3A = 108°
⇒ A = 108°/3 = 36°
Hence, the value of A is 36°.
(iii) sec 2A = cosec (A – 27°)
We know that cosec (90° – θ) = sec θ
cosec (90° – 2A) = cos (A – 27°)
By comparing both
90° – 2A = A – 27°
By further calculation
90° + 27° = A + 2A
So we get
3A = 117°
⇒ A = 117°/3 = 39°
Hence, the value of A is 39°.
18. Find the value of θ (0° < θ < 90°) if:
(i) cos 63° sec (90° – θ) = 1
(ii) tan 35° cot (90° – θ) = 1.
Solution
(i) cos 63° sec (90° – θ) = 1
It can be written as
cos 63° = 1/sec(90° – θ)
We know that 1/sec θ = cos θ
cos 63° = cos (90° – θ)
By comparing both
90° – θ = 63°
By further calculation
θ = 90° – 63° = 27°
(ii) tan 35° cot (90° – θ) = 1
It can be written as
tan 35° = 1/cot (90° – θ)
We know that 1/cot θ = cos θ
tan 35° = tan (90° – θ)
By comparing both
35° = 90° – θ
By further calculation
θ = 90° – 35° = 55°
19. If A, B and C are the interior angles of a △ ABC, show that
(i) cos (A + B)/2 = sin C/2
(ii) tan (C + A)/2 = cot B/2.
Solution
A, B and C are the interior angles of a △ ABC
It can be written as
∠A + ∠B + ∠C = 180°
Dividing both sides by 2
(∠A + ∠B + ∠C)/2 = 180°/2
⇒ A/2 + B/2 + C/2 = 90°
(i) cos (A + B)/2 = sin C/2
We can write it as
(A + B)/2 = 90° – C/2
We know that
cos (90° – C/2) = sin C/2
Here, cos (90° – θ) = sin θ
sin C/2 = sin C/2
(ii) tan (C + A)/2 = cot B/2
We know that (A + C)/2 = 90° – B/2
= tan (90° – B/2)
So we get
= cot B/2
= RHS
Chapter Test
1. Find the values of:
(i) sin2 60° – cos2 45° + 3tan2 30°
(ii)
(iii) sec 30° tan 60° + sin 45° cosec 45° + cos 30° cot 60°
Solution
(i) sin2 60° – cos2 45° + 3tan2 30°
Therefore, sin2 60° – cos2 45° + 3tan2 30° = 1¼
Hence,
(iii) sec 30° tan 60° + sin 45° cosec 45° + cos 30° cot 60°
= 2 + 1 + ½ = 3 + ½ = (6 + 1)/2
= 7/2 = 3½
Thus, sec 30° tan 60° + sin 45° cosec 45° + cos 30° cot 60° = 3½
2. Taking A = 30°, verify that
(i) cos4 A – sin4 A = cos 2A
(ii) 4cos A cos (60° – A) cos (60° + A) = cos 3 A.
Solution
(i) cos4 A – sin4 A = cos 2A
Let’s take A = 30°
so, we have
L.H.S.= cos4 A – sin4 A = cos4 30° – sin4 30°
Now,
R.H.S. = cos 2A = cos 2(30o) = ½
Therefore, L.H.S. = R.H.S. hence verified.
(ii) 4 cos A cos (60°- A) cos (60° + A) = cos 3 A
Let’s take A = 30°
L.H.S. = 4 cos A cos (60° – A) cos (60° + A)
= 4 cos 30° cos (60° – 30°) cos (60° + 30°)
= 4 cos 30° cos 30° cos 90°
= 4 × (√3/2) × (√3/2) × 0
= 0
Now,
R.H.S. = cos 3A
= cos (3 × 30°) = cos 90° = 0
Hence, L.H.S. = R.H.S. hence verified.
3. If A = 45° and B = 30°, verify that sin A/ (cos A + sin A + sin B) = 2/3
Solution
Taking,
Hence verified.
4. Taking A = 60° and B = 30°, verify that
(i) sin (A + B)/cos A cos B = tan A + tan B
(ii) sin (A – B)/sin A sin B = cot B – cot A
Solution
(i) Here, A = 60° and B = 30°
5. If √2 tan 2θ = √6 and θ° < 2θ < 90°, find the value of sin θ + √3 cos θ – 2 tan2 θ.
Solution
Given,
√2 tan 2θ = √6
⇒ tan 2θ = √6/ √2
= √3
= tan 60o
⇒ 2θ = 60o
⇒ θ = 30o
Now,
sin θ + √3 cos θ – 2 tan2 θ
= sin 30o + √3 cos 30o – 2 tan2 30o
= ½ + √3 x √3/2 – 2 (1/√3)2
= ½ + 3/2 – 2/3
= 4/2 – 2/3
= (12 – 4)/6
= 8/6
= 4/3
6. If 3θ is an acute angle, solve the following equations for θ:
(i) (cosec 3θ – 2) (cot 2θ – 1) = 0
(ii) (tan θ – 1) (cosec 3θ – 1) = 0
Solution
(i) (cosec 3θ – 2) (cot 2θ – 1) = 0
Now, either
cosec 3θ – 2 or cot 2θ – 1 = 0
⇒ cosec 3θ = 2 or cot 2θ = 1
So,
cosec 3θ = cosec 3θ° or cot 2θ =cot 45°
⇒ 3θ = 30° or 2θ = 45°
Thus, θ = 30° or 45°.
(ii) (tan θ – 1) (cosec 3θ – 1) = 0
Now, either
tan θ – 1 = 0 or cosec 3θ – 1 = 0
⇒ tan θ = 1 or cosec 3θ = 1
So,
tan θ = tan45° or cosec 3 θ = cosec 90°
⇒ θ = 45° or 3θ = 90° i.e. θ = 30°
Thus, θ = 45° or 30°.
7. If tan (A + B) = √3 and tan (A – B) = 1 and A, B (B < A) are acute angles, find the values of A and B.
Solution
Given, tan (A + B) = √3
So, tan (A + B) = tan 60° [Since, tan 60° = √3]
⇒ A + B = 60° …(i)
Also, given
tan (A – B) = 1
So, tan (A – B) = tan 45° [tan 45° = 1]
⇒ A – B = 45° …(ii)
From equation (1) and (2), we get
A + B + A - B = 60° + 45°
⇒ 2A = 105o
⇒ A = 52½o
Now, on substituting the value of A in equation (i), we get
52½o + B = 60°
⇒ B = 60° – 52½o = 7½o
Therefore, the value of A = 52½o and B = 7½o
8. Without using trigonometrical tables, evaluate the following:
(i) sin2 28° + sin2 62° – tan2 45°
(ii)
Solution
(i) sin2 28° + sin2 62° – tan2 45°
= sin2 28° + sin2 (90° – 28°) – tan2 45°
= sin2 28° + cos2 28° – tan2 45°
= 1 – (1)2 (∵ sin2 θ + cos2 θ = 1 and tan 45° = 1)
= 1 – 1
= 0
= (2×1) + 1 + 1
= 2 + 1 + 1
= 4
(iii) cos 18° sin 12° + sin 18° cos 12°
= cos (90° – 12°) sin 72° + sin (90° – 12°) cos 12°
= sin 72°.sin 12° + cos 12° cos 12°
= sin2 12° + cos2 12°
= 1 (∵ sin2 θ + cos2 θ = 1)
(iv) 5 sin 50° sec 40° – 3 cos 59° cosec 31°
= 5 – 3
= 2
9. Prove that:
Solution
Thus, L.H.S. = R.H.S.
Hence proved.
10. When 0° < A < 90°, solve the following equations:
(i) sin 3A = cos 2A
(ii) tan 5A = cot A
Solution
(i) sin 3A = cos 2A
⇒ sin 3A = sin (90° – 2A)
So,
3A = 90° – 2A
⇒ 3 A + 2A = 90°
⇒ 5A = 90°
∴ A = 90°/5 = 18°
⇒ tan 5A = cot A
⇒ tan 5A = tan (90° – A)
So,
5A = 90°- A
⇒ 5A + A = 90°
⇒ 6A = 90°
∴ A = 90°/6 = 15°
11. Find the value of θ if
(i) sin (θ + 36°) = cos θ, where θ and θ + 36° are acute angles.
(ii) sec 4θ = cosec (θ – 20°), where 4θ and θ – 20° are acute angles.
Solution
(i) Given, θ and (θ + 36°) are acute angles
And,
sin (θ + 36°) = cos θ = sin (90° – θ) [As, sin (90° – θ) = cos θ]
On comparing, we get
θ + 36° = 90° – θ
⇒ θ + θ = 90° – 36°
⇒ 2θ = 54°
⇒ θ = 54°/2
∴ θ = 27°
(ii) Given, θ and (θ – 20°) are acute angles
And,
sec 4θ = cosec (θ – 20°)
⇒ cosec (90° – 4θ) = cosec (θ – 20°) [Since, cosec (90° – θ) = sec θ]
On comparing, we get
90° – 4θ = θ – 20°
⇒ 90° + 20° = θ + 4θ
⇒ 5θ = 110°
⇒ θ = 110°/5
∴ θ = 22°
12. In the adjoining figure, ABC is right-angled triangle at B and ABD is right angled triangle at A. If BD ⊥ AC and BC = 2√3cm, find the length of AD.
Solution
Given, ∆ABC and ∆ABD are right angled triangles in which ∠A = 90° and ∠B = 90°
And,
BC = 2√3 cm. AC and BD intersect each other at E at right angle and ∠CAB = 30°.
Now in right ∆ABC, we have
tan θ = BC/AB
⇒ tan 30° = 2√3/ AB
⇒ 1/√3 = 2√3/ AB
⇒ AB = 2√3 × √3 = 2 × 3 = 6 cm.
In ∆ABE, ∠EAB = 30° and ∠EAB = 90°
Hence,
∠ABE or ∠ABD = 180° – 90° – 30°
= 60°
Now in right ∆ABD, we have
tan 60° = AD/AB
⇒ √3 = AD/6
Thus, AD = 6√3 cm.