ML Aggarwal Solutions for Chapter 17 Trigonometric Ratios Class 9 Maths ICSE
Exercise 17
1. (a) From the figure (1) given below, find the values of:
(i) sin θ
(ii) cos θ
(iii) tan θ
(iv) cot θ
(v) sec θ
(vi) cosec θ
(b) From the figure (2) given below, find the values of:
(i) sin
(ii) cos A
(iii) sin2 A + cos2 A
(iv) sec2 A – tan2 A.
Solution
(a) From right angled triangle OMP,
By Pythagoras theorem, we get
OP2 = OM2 +MP2
⇒ MP2 = OP2 + OM2
⇒ MP2 = (15)2 – (12)2
⇒ MP2 = 225 – 144
⇒ MP2 = 81
⇒ MP2 = 92
⇒ MP = 9
(i) sin θ = MP/OP
= 9/15
= 3/5
(ii) cos θ = OM/OP
= 12/15
= 4/5
(iii) tan θ = MP/OP
= 9/12
= ¾
(iv) cot θ = OM/MP
= 12/9
= 4/3
(v) sec θ = OP/OM
= 15/12
= 5/4
(vi) cosec θ = OP/MP
= 15/9
= /3
(b) From right angled triangle ABC,
By Pythagoras theorem, we get
AB2 = AC2 + BC2
⇒ AB2 = (12)2 + (5)2
⇒ AB2 = 144 + 25
⇒ AB2 = 169
⇒ AB2 = 132
⇒ AB = 13
(i) sin A = BC/AB
= 5/13
(ii) cos A = AC/AB
= 12/13
(iii) sin2 A + cos2 A = (BC/AB)2 + (AC/AB)2
= (5/13)2 + (12/13)2
= (25/169) + (144/169)
= (25 + 144)/ 169
= 169/169
= 1
sin2 A + cos2 A = 1
(iv) sec2 A – tan2 A = (AB/AC)2 – (BC/AC)2
= (13/12)2 – (5/12)2
= (169/144) – (25/144)
= (169 – 25)/144
= 144/144
= 1
sec2 A – tan2 A = 1
2. (a) From the figure (1) given below, find the values of:
(i) sin B
(i) cos C
(iii) sin B + sin C
(iv) sin B cos C + sin C cos B.
(b) From the figure (2) given below, find the values of:
(i) tan x
(ii) cos y
(iii) cosec2 y – cot2 y
(iv) 5/sin x + 3/sin y – 3 cot y.
Solution
(a) From right angled triangle ABC,
By Pythagoras theorem, we get
BC2 = AC2 + AB2
⇒ AC2 = BC2 – AB2
⇒ AC2 = (10)2 – (6)2
⇒ AC2 = 100 – 36
⇒ AC2 = 64
⇒ AC2 = 82
⇒ AC = 8
(i) sin B = perpendicular/ hypotenuse
= AC/BC
= 8/10
= 4/5
(ii) cos C = Base/hypotenuse
= AC/BC
= 8/10
= 4/5
(iii) sin B = Perpendicular/hypotenuse
= AC/BC
= 8/10
= 4/5
sin C = perpendicular/hypotenuse
= AB/BC
= 6/10
= 3/5
Now,
sin B + sin C = (4/5) + (3/5)
= (4 + 3)/5
= 7/5
(iv) sin B = 4/5
cos C = 4/5
sin C = perpendicular/ hypotenuse
= AB/BC
= 6/10
= 3/5
cos B = Base/Hypotenuse
= AB/BC
= 6/10
= 3/5
sin B cos C + sin C cos B
= (4/5)×(4/5) + (3/5)×(3/5)
= (26/25) + (9/25)
= (16+9)/25
= 25/25
= 1
(b) From Figure
AC = 13, CD = 5, BC =21,
BD = BC – CD
= 21 – 5
= 16
From right angled ∆ACD,
By Pythagoras theorem we get
AC = AD2 + CD2
⇒ AD2 = AC2 – CD2
⇒ AD2 = (13)2 – (5)2
⇒ AD2 = 169 – 25
⇒ AD2 = 144)
⇒ AD2 = (12)2
⇒ AD = 12
From right angled ∆ABD,
By Pythagoras angled ∆ABD
By Pythagoras theorem we get
AB2 = AD2 + BD2
⇒ AB2 = 400
⇒ AB2 = (20)2
⇒ AB = 20
(i) tan x = perpendicular/Base (in right angled ∆ACD)
=CD/AD
= 5/12
(ii) cos y = Base/Hypotenuse (in right angled ∆ABD)
= BD/AB
= (20)/12 – (5/3)
cot y = Base/Perpendicular (in right ∆ABD)
=BD/AB
= 16/20 = 4/5
(iii) cos y = Hypotenuse/ perpendicular (in right angled ∆ABD)
BD/AB
= 20/12
= 5/3
cot y = Base/Perpendicular (in right ∆ABD)
AB/AD
= 16/12
= 4/3
cosec2 y – cot2 y = (5/3)2 – (4/3)2
= (25/9) – (16/9)
= (25-16)/9
= 9/9
= 1
Hence, cosec2 y – cot2 y = 1
(iv) sin x = Perpendicular/Hypotenuse (in right angled ∆ACD)
= AD/AB
= 12/20
= 3/5
cot y = Base/Perpendicular (in right angled ∆ABD)
= BD/AD
= 16/12
= 4/3
(5/sin x) + (3/sin y) – 3cot y
= [5/(5/13)] + 3/(3/5) – (3 × 4/3)
= (5× 13/5) + (3× 5/3) – (3× 4/3)
= (1× 13/1) + (1× 5/1) – (1× 4/1)
= 13 + 5 – 4
= 18 – 4
= 14
Hence 5/sin x + 3/sin y – 3cot y = 14
3. (a) From the figure (1) given below, find the value of sec θ.
(b) From the figure (2) given below, find the values of:
(ii) cot x
(iii) cot2 x- cosec2 x
(iv) sec y
(v) tan2 y – 1/cos2 y.
Solution
(a) From the figure, Sec θ = AB/BD
But in ∆ADC, ∠D = 90o
AC2 =AD2 + DC2 (Pythagoras Theorem)
⇒ (13)2 =AD2 + 25
⇒ AD2 = 169 -25
= 144
= (12)2
⇒ AD = 12
AB2 = AD2 + BD2 (in right ∆ABD)
= (12)2 + (16)2
= 144 + 256
= 400
= (20)2
⇒ AB = 20
Now, Sec θ = AB/BD
= 20/16
= 5/4
(b) let given ∆ABC
BD = 3, AC = 12, AD = 4
In right angled ∆ABD
By Pythagoras theorem
AB2 =AD2 + BD2
⇒ AB2 = (4)2 + (3)2
⇒ AB2 = 16 + 9
⇒ AB2 = 25
⇒ AB2 = (5)2
⇒ AB = 5
In right angled triangle ACD
By Pythagoras theorem,
AC2 = AD2 + CD2
⇒ CD2 = AC2 – AD2
⇒ CD2 = (12)2 – (4)2
⇒ CD2 = 144 – 16
⇒ CD2 = 128
⇒ CD = √128
⇒ CD = √64 × 2 CD
= 8√2
(i) sin x = perpendicular/Hypotenuse
= AD/AB
= 4/5
(ii) cot x = Base/Perpendicular
= BD/AD
= ¾
(iii) cot x = Base/Perpendicular
BD/AD
= 3/4
(iv) cosec x = Hypotenuse/Perpendicular
AB/BD
= 5/4
cot2 x – cosec2 x
= (3/4)2 – (5/4)2
= 9/16 – 25/16
(9 -25)/16
= -16/16
= -1
Perpendicular = Hypotenuse/Base (in right angled ∆ACD)
= AD/CD
= 12/(8 √2)
= 3/(2 √2)
cot y = Base/Hypotenuse
= AD/CD
= 4/8 √ 2
= 1/2 √2
cot y = Base/Hypotenuse (in right angled ∆ACD)
= CD/AC
= 8√2/12
= 2√/3
Now tan2 y = 1/cos2 y
= (1/2√2)2 – 1/(2√2/3)2
= ¼ × – ¼ × 2
= (1/8) – (9/8)
= (1-9)/8
= -8/8
= -1
tan2 y – 1/cos2 y = –1
4. (a) From the figure (1) given below, find the values of:
(i) 2 sin y – cos y
(ii) 2 sin x – cos x
(iii) 1 – sin x + cos y
(iv) 2 cos x – 3 sin y + 4 tan x
(b) In the figure (2) given below, ∆ABC is right-angled at B. If AB = y units, BC = 3 units and CA = 5 units, find
(i) sin x°
(ii) y.
Solution
(a) In a right angled ∆BCD,
Using Pythagoras theorem
BC2 = BD2 + CD2
Substituting the values
BC2 = 92 + 122
By further calculation
BC2 = 81 + 144 = 225
⇒ BC2 = 152
⇒ BC = 15
In a right angled ∆ABC,
Using Pythagoras theorem
AC2 = AB2 + BC2
We can write it as
AB2 = AC2 – BC2
Substituting the values
AB2 = 252 – 152
By further calculation
AB2 = 625 – 225 = 400
So we get
AB2 = 202
AB = 20
(i) We know that
In right angled ∆BCD
sin y = perpendicular/ hypotenuse
⇒ sin y = BD/ BC
Substituting the values
sin y = 9/15 = 3/5
In right angled ∆BCD
cos y = base/hypotenuse
⇒ cos y = CD/BC
Substituting the values
cos y = 12/15 = 4/5
Here
2sin y – cos y = 2× 3/5 – 4/5
We can write it as
= 6/5 – 4/5
= 2/5
Therefore, 2 sin y – cos y = 2/5
(ii) In right angled ∆ABC
sin x = perpendicular/ hypotenuse
sin x = BC/AC
Substituting the values
sin x = 15/25 = 3/5
In right angled ∆ABC
cos x = base/hypotenuse
⇒ cos x = AB/AC
Substituting the values
cos x = 20/25 = 4/5
Here
2 sin x – cos x = 2× 3/5 – 4/5
We can write it as
= 6/5 – 4/5
= 2/5
Therefore, 2 sin x – cos x = 2/5.
(iii) In right angled ∆ABC
sin x = perpendicular/hypotenuse
⇒ sin x = BC/AC
Substituting the values
sin x = 12/25 = 3/5
In right angled ∆BCD
cos y = base/hypotenuse
⇒ cos y = CD/BC
Substituting the values
cos y = 12/15 = 4/5
Here
1 – sin x + cos y
= 1 – 3/5 + 4/5
By further calculation
= (5 – 3 + 4)/ 5
So we get
= (9 – 3)/ 5
= 6/5
Therefore, 1 – sin x + cos y = 6/5.
(iv) In right angled ∆BCD
cos x = base/hypotenuse
⇒ cos x = AB/AC
Substituting the values
cos x = 20/25 = 4/5
In right angled ∆BCD
sin y = perpendicular/hypotenuse
⇒ sin y = BD/BC
Substituting the values
sin y = 9/15 = 3/5
In right angled ∆ABC
tan x = perpendicular/base
⇒ tan x = BC/AB
Substituting the values
tan x = 15/20 = ¾
Here,
2 cos x – 3 sin y + 4 tan x = (2× 4/5) – (3× 3/5) + (4× ¾)
By further calculation
= 8/5 – 9/5 3/1
Taking LCM
= (8 – 9 + 15)/5
So we get
= (23 – 9)/ 5
= 14/5
(b) It is given that
AB = y units, BC = 3 units, CA = 5 units
(i) In right angled ∆ABC
sin x = perpendicular/hypotenuse
⇒ sin x = BC/AC
Substituting the values
sin x = 3/5
(ii) In right angled ∆ABC
Using Pythagoras theorem
AC2 = BC2 + AB2
We can write it as
AB2 = AC2 – BC2
Substituting the values
AB2 = 52 – 32
By further calculation
AB2 = 25 – 9 = 16
So we get
AB2 = 42
⇒ AB = 4
y = 4 units
Therefore, y = 4 units.
5. In a right-angled triangle, it is given that angle A is an acute angle and that
tan A=5/12. Find the values of:
(i) cos A
(ii) cosec A- cot A.
Solution
Here, ABC is right angled triangle
∠A is an acute angle and ∠C = 90o
tan A = 5/12
⇒ BC/AC =5/12
Let BC = 5x and AC = 12x
From right angled ∆ABC
By Pythagoras theorem, we get
AB2 = (5x)2 + (12x)2
⇒ AB2 = 25x2 + 144x2
⇒ AB2 = 169x2
(i) cos A = Base/ Hypotenuse
= AC / AB
= 12x/13x
=12/13
(ii) cosec A = Hypotenuse/perpendicular
= AC / BC
= 13x /5x
= 13/5
cosec A – cot A = 13/5 – 12/5
= (13-12)/5
= 1/5
6. (a) In ∆ABC, ∠A = 90°. If AB = 7 cm and BC – AC = 1 cm, find:
(i) sin C
(ii) tan B
(b) In ∆PQR, ∠Q = 90°. If PQ = 40 cm and PR + QR = 50 cm, find:
(i) sin P
(ii) cos P
(iii) tan R.
Solution
(a) In right ∆ABC
∠A = 90°
AB = 7 cm
BC – AC = 1 cm
⇒ BC = 1 + AC
We know that
BC2 = AB2 + AC2
Substituting the value of BC
(1 + AC)2 = AB2 + AC2
⇒ 1 + AC2 + 2AC = 72 + AC2
By further calculation
1 + AC2 + 2AC = 49 AC2
⇒ 2AC = 49 – 1 – 48
So we get
AC = 48/2 = 24 cm
Here,
BC = 1 + AC
Substituting the value
BC = 1 + 24 = 25 cm
(i) sin C = AB/BC = 7/25
(ii) tan B = AC/AB = 24/7
(b) In right ∆PQR
∠Q = 90°
PQ = 40 cm
⇒ PQ + QR = 50 cm
We can write it as
PQ = 50 – QR
Using Pythagoras theorem
PR2 = PQ2 + QR2
⇒ (50 – QR)2 = (40)2 + QR2
By further calculation
2500 + QR2 – 100QR = 1600 + QR2
So we get
2500 – 1600 = 100QR
⇒ 100QR = 900
By division
QR = 900/100 = 9
We get
PR = 50 – 9 = 41
(i) sin P = QR/PR = 9/41
(ii) cos P = PQ/PR = 40/41
(iii) tan R = PQ/QR = 40/9
7. In triangle ABC, AB = 15 cm, AC = 15 cm and BC = 18 cm. Find
(i) cos ∠ABC
(ii) sin ∠ACB.
Solution
Here ABC is a triangle in which
AB = 15 cm, AC = 15 cm and BC = 18 cm
Draw AD perpendicular to BC , D is mid-point of BC.
Then, BD – DC = 9 cm
in right angled triangle ABD,
By Pythagoras theorem, we get
AB2 = AD2 + BD2
⇒ AD2 = AB2 – BD2
⇒ AD2 = (15)2 – (9)2
⇒ AD2 = 225 – 81
⇒ AD2 = 144
⇒ AD – 12 cm
(i) cos ∠ABC = Base/Hypotenuse
(In right angled ∆ABD, ∠ABC = ∠ABD)
= BD / AB
= 9/15
= 3/5
(ii) sin ∠ACB = sin ∠ACD
= perpendicular/ Hypotenuse
= AD/AC
= 12/15
= 4/5
8. (a) In the figure (1) given below, ∆ABC is isosceles with AB = AC = 5 cm and BC = 6 cm. Find
(i) sin C
(ii) tan B
(iii) tan C – cot B.
(b) In the figure (2) given below, ∆ABC is right-angled at B. Given that ∠ACB = θ, side AB = 2 units and side BC = 1 unit, find the value of sin2 θ + tan2 θ.
(c) In the figure (3) given below, AD is perpendicular to BC, BD = 15 cm, sin B = 4/5 and tan C = 1.
(i) Calculate the lengths of AD, AB, DC and AC.
(ii) Show that tan2 B – 1/cos2 B = – 1.
Solution
(a) It is given that
∆ABC is isosceles with AB = AC = 5 cm and BC = 6 cm
Construct AD perpendicular to BC
D is the mid point of BC
So BD = CD
Here
BD = CD = 6/2 = 3 cm
In right angled ∆ABD
Using Pythagoras theorem
AB2 = AD2 + BD2
We can write it as
AD2 = AB2 – BD2
Substituting the values
AD2 = 52 – 32
By further calculation
AD2 = 25 – 9 = 16
So we get
AD2 = 42
AD = 4 cm
(i) In right angled ∆ACD
sin C = perpendicular/hypotenuse
sin C = AD/AC = 4/5
(ii) In right angled ∆ABD
tan B = perpendicular/base
tan B = AD/BD = 4/3
(iii) In right angled ∆ACD
tan C = perpendicular/base
⇒ tan C = AD/CD = 4/3
In right angled ∆ABD
cot B = base/perpendicular
⇒ cot B = BD/AD = ¾
Here
tan C – cot B = 4/3 – ¾
Taking LCM,
tan C – cot B = (16 – 9)/12 = 7/12
(b) It is given that
∆ABC is right-angled at B
AB = 2 units and BC = 1 unit
In right angled ∆ABC
Using Pythagoras theorem
AC2 = AB2 + BC2
Substituting the values
AC2 = 22 + 12
⇒ AC2 = 4 + 1 = 5
So we get
AC2 = 5
⇒ AC = √5 units
In right angled ∆ABC
sin θ = perpendicular/hypotenuse
⇒ sin θ = AB/AC = 2/√5
In right angled ∆ABC
tan θ = perpendicular/base
⇒ tan θ = AB/BC = 2/1
We know that
sin2 θ + tan2 θ = (2/√5)2 + (2/1)2
By further calculation
= 4/5 + 4/1
Taking LCM
= (4 + 20)/5
= 24/5
= 4 4/5
(c) (i) In ∆ABC
AD is perpendicular to BC
BD = 15 cm
sin B = 4/5
tan C = 1
In ∆ABD
sin B = perpendicular/hypotenuse
⇒ sin B = AD/AB = 4/5
Consider AD = 4x and AB = 5x
Using Pythagoras theorem
In right angled ∆ABD,
AB2 = AD2 + BD2
We can write it as
BD2 = AB2 – AD2
Substituting the values
(15)2 = (5x)2 – (4x)2
⇒ 225 = 25x2 – 16x2
By further calculation
225 = 9x2
⇒ x2 = 225/9 = 25
So we get
x = √25 = 5
Here
AD = 4 × 5 = 20
AB = 5 × 5 = 25
In right angled ∆ACD
tan C = perpendicular/base
So we get
tan C = AD/CD = 1/1
Consider AD = X then CD = x
In right angled ∆ADC
Using Pythagoras theorem
AC2 = AD2 + CD2
Substituting the values
AC2 = x2 + x2 …(1)
So the equation becomes
AC2 = 202 + 202
⇒ AC2 = 400 + 400 = 800
So we get
AC = √800 = 20√2
Length of AD = 20 cm
Length of AB = 25 cm
Length of DC = 20 cm
Length of AC = 20√2 cm
(ii) In right angled ∆ABD
tan B = perpendicular/base
So we get
tan B = AD/BD
Substituting the values
tan B = 20/15 = 4/3
In right angled ∆ABD,
cos B = base/hypotenuse
So we get,
cos B = BD/AB
Substituting the values
cos B = 15/25 = 3/5
Here,
LHS = tan2 B – 1/cos2 B
Substituting the values
= (4/3)2 – 1/(3/5)2
By further calculation
= (4)2/(3)2 – (5)2/(3)2
= 16/9 – 25/9
So we get
= (16 – 25)/9
= -9/9
= – 1
= RHS
Hence, proved.
9. If sin θ =3/5 and θ is acute angle, find
(i) cos θ
(ii) tan θ.
Solution
Let ∆ ABC be a right angled at B
Let ∠ACB = θ
Given that, sin θ = 3/5
AB/AC = 3/5
Let AB = 3x
then AC = 5x
In right angled ∆ ABC,
By Pythagoras theorem,
We get,
(5x)2 = (3x)2 + BC2
⇒ BC2 = (5x)2 – (3x)2
⇒ BC2 = (2x)2
⇒ BC = 4x
(i) cos θ = Base/ Hypotenuse
= BC / AC
= 4x /5x
= 4/5
(ii) tan θ = perpendicular/Base
= AB/BC
= 3x/4x
= ¾
10. Given that tan θ = 5/12 and θ is an acute angle, find sin θ and cos θ.
Solution
Consider ∆ ABC be right angled at B and ∠ACB = θ
It is given that
tan θ = 5/12
AB/BC = 5/12
Consider AB = 5x and BC = 12x
In right angled ∆ ABC
Using Pythagoras theorem
AC2 = AB2 + BC2
Substituting the values
AC2 = (5x)2 + (12x)2
By further calculation
AC2 = 25x2 + 144x2 = 169x2
So we get
AC2 = (13x)2
⇒ AC = 13x
In right angled ∆ ABC
sin θ = perpendicular/hypotenuse
So we get
sin θ = AB/AC = 5x/13x = 5/13
In right angled ∆ ABC
cos θ = base/hypotenuse
So we get
cos θ = BC/AC
Substituting the values
cos θ = 12x/13x = 12/13
11. If sin θ = 6/10, find the value of cos θ + tan θ.
Solution
Consider ∆ ABC be right angled at B and ∠ACB = θ
It is given that
sin θ = AB/AC
⇒ sin θ = 6/10
Take AB = 6x then AC = 10x
In right angled ∆ ABC
Using Pythagoras theorem
AC2 = AB2 + BC2
Substituting the values
(10x)2 = (6x)2 + BC2
By further calculation
BC2 = 100x2 – 36x2 = 64x2
So we get
BC2 = (8x)2
⇒ BC = 8x
In right angled ∆ ABC
cos θ = base/hypotenuse
⇒ cos θ = BC/AC
Substituting the values
cos θ = 8x/10x = 4/5
In right angled ∆ ABC
tan θ = perpendicular/base
⇒ tan θ = AB/BC
Substituting the values
tan θ = 6x/8x = ¾
Here
cos θ + tan θ = 4/5 + ¾
Taking LCM
= (16 + 15)/ 20
= 31/20
= 1 11/20
12. If tan = 4/3, find the value of sin θ + cos θ (both sin θ and cos θ are positive).
Solution
Let ∆ABC be a right angled
∠ACB = θ
Given that, tan θ = 4/3
(AB/BC = 4/3)
Give that, tan θ = 4/3
(AB/BC = 4/3)
Let AB = 4x,
then BC = 3x
In right angled ∆ABC
By Pythagoras theorem, we get
AC2 = AB2 + BC2
⇒ AC2 = AB2 + BC2
⇒ AC2 = AB2 + BC2
⇒ AC2 = AB2 + BC2
⇒ (AC2 = (4x)2 + (3x)2
⇒ AC2 = 16x2 + 9x2
⇒ AC2 = 25x2
⇒ AC2 = (5x)2
⇒ AC = 5x
Sin θ = perpendicular/Hypotenuse
= AB/AC
= 4x/5x
= 4/5
cos θ = Base/Hypotenuse
= BC/AC
= 3x/5x
= 3/5
sin θ + cos θ
= 4/5 + 3/5
= (4 + 3)/5
= 7/5
Hence, Sin θ + cos θ = 7/5 = 1 2/5
13. 1f cosec = √5 and θ is less than 90°, find the value of cot θ – cos θ.
Solution
Given cosec θ = √5/1 = OP/PM
OP = √5 and PM = 1
Now OP2 = OM2 + PM2 using Pythagoras theorem
(√5)2 = OM2 + 12
⇒ 5 = OM2 + 1
⇒ OM2 = 5 – 1
⇒ OM2 = 4
⇒ OM = 2
Now cot θ = OM/PM
= 2/1
= 2
cos θ = OM/OP
= 2/√5
Now,
cot θ – cos θ = 2 – (2/√5)
= 2 (√5 – 1)/ √5
14. Given sin θ = p/q, find cos θ + sin θ in terms of p and q.
Solution
Given that sin θ = p/q
Which implies,
AB/AC = p/q
Let AB = px
And then AC = qx
In right angled triangle ABC
By Pythagoras theorem,
We get
AC2 = AB2 + BC2
⇒ BC2 = AC2 – AB2
⇒ BC2 = q2x2 – p2x2
⇒ BC2 = (q2 – p2)x2
⇒ BC = √( q2 – p2)x
In right angled triangle ABC,
cos θ = base/hypotenuse
= BC/AC
= √( q2 – p2)x/qx
= √( q2 – p2)/q
Now,
Sin θ + cos θ = p/q + √(q2–p2)/q
= [p + √(q2–p2)]/q
15. If θ is an acute angle and tan = 8/15, find the value of sec θ + cosec θ.
Solution
Given tan θ = 8/15
θ is an acute angle
in the figure triangle OMP is a right angled triangle,
∠M = 90o and ∠Q = θ
tanθ = PM/OL = 8/15
Therefore, PM = 8, OM = 15
But OP2 = OM2 + PM2 using Pythagoras theorem,
= 152 + 82
= 225 + 64
= 289
= 172
Therefore, OP = 17
sec θ = OP/OM = 17/15
cosec θ = OP/PM = 17/8
Now,
sec θ + cosec θ = (17/15) + (17/8)
= (136 + 255)/120
= 391/120
= 3 31/120
16. Given A is an acute angle and 13 sin A = 5, Evaluate:
(5 sin A – 2 cos A)/ tan A.
Solution
Let triangle ABC be a right angled triangle at B and A is an acute angle
Given that 13 sin A = 5
Sin A = 5/13
AB/AC = 5/13
Let AB = 5x
AC = 13 x
In right angled triangle ABC,
Using Pythagoras theorem,
We get
AC2 = AB2 + BC2
⇒ BC2 = AC2 – BC2
⇒ BC2 = (13x)2 – (5x)2
⇒ BC2 = 169x2 – 25x2
⇒ BC2 = 144x2
⇒ BC = 12x
⇒ sin A = 5/13
⇒ cos A = base/ hypotenuse
= BC/AC
= 12x/ 13x
= 12/13
Tan A = perpendicular/ base
= AB/BC
= 5x/ 12x
= 5/ 12
Now,
(5 sin A – 2 cos A)/tan A = [(5) (5/13) – (2) (12/13)]/(5/12)
= (1/13)/(5/12)
= 12/65
Hence (5 sin A – 2 cos A)/tan A = 12/65
17. Given A is an acute angle and cosec A = √2, find the value of
(2 sin2 A + 3 cot2 A)/ (tan2 A – cos2 A).
Solution
Let triangle ABC be a right angled at B and A is a acute angle.
Given that cosec A = √2
Which implies,
AC/BC = √2/1
Let AC = √2x
Then BC = x
In right angled triangle ABC
By using Pythagoras theorem,
We get
AC2 = AB2 + BC2
⇒ (√2x)2 = AB2 + x2
⇒ AB2 = 2x2 – x2
⇒ AB = x
sin A = perpendicular/ hypotenuse
= BC/AC
= 1/ √2
cot A = base/ perpendicular
= x/x
= 1
Tan A = perpendicular/ base
= BC/AB
= x/x
= 1
cos A = base/ hypotenuse
= AB/AC
= x/ √2x
= 1/√2
Substituting these values we get
2 sin2A + 3 cot2A/(tan2A – cos2A) = 8
18. The diagonals AC and BD of a rhombus ABCD meet at O. If AC = 8 cm and BD = 6 cm, find sin ∠OCD.
Solution
It is given that
Diagonals AC and BD of rhombus ABCD meet at O
AC = 8 cm and BD = 6 cm
O is the mid point of AC
We know that
AO = OC = AC/2 = 8/2 = 4 cm
O is the mid point of BD
BO = OD = BD/2 = 6/2 = 3 cm
In right angled ∆COD
CD2 = OC2 + OD2
Substituting the values
CD2 = 42 + 32
So we get
CD2 = 16 + 9 = 25
⇒ CD2 = 52
⇒ CD = 5 cm
In right angled ∆COD
sin ∠OCD = perpendicular/ hypotenuse
So we get
sin ∠OCD = OD/CD = 3/5
19. If tan θ = 5/12, find the value of (cos θ + sin θ)/(cos θ – sin θ).
Solution
Consider ∆ABC be right angled at B and ∠ACB = θ
It is given that
tan θ = AB/BC = 5/12
Take AB = 5x then BC = 12x
In right angled ∆ABC,
Using Pythagoras theorem
AC2 = AB2 + BC2
Substituting the values
AC2 = (5x)2 + (12x)2
By further calculation
AC2 = 25x2 + 144x2 = 169x2
So we get
AC2 = (13x)2
⇒ AC = 13x
In right angled ∆ABC
cos θ = base/hypotenuse
cos θ = BC/AC
Substituting the values
cos θ = 12x/13x = 12/13
In right angled ∆ABC
sin θ = perpendicular/hypotenuse
⇒ sin θ = AB/AC
Substituting the values
sin θ = 5x/13x = 5/13
Here
(cos θ + sin θ)/(cos θ – sin θ) = [12/13 + 5/13]/ [12/13 – 5/13]
Taking LCM
= [(12 + 5)/13]/[(12 – 5)/13]
So we get
= (17/13)/(7/13)
= 17/13 × 13/7
= 17/7
Therefore, (cos θ + sin θ)/(cos θ – sin θ) = 17/7
20. Given 5 cos A – 12 sin A = 0, find the value of (sin A + cos A)/ (2 cos A – sin A).
Solution
It is given that
5 cos A – 12 sin A = 0
We can write it as
5 cos A = 12 sin A
So we get
sin A/cos A = 5/12
We know that sin A/ cos A = tan A
tan A = 5/12
Consider ∆ABC right angled at B and ∠A is acute angle
Here,
tan A = BC/AB = 5/12
Take BC = 5x then AB = 12x
In right angled ∆ABC
Using Pythagoras theorem
AC2 = BC2 + AB2
Substituting the values
AC2 = (5x)2 + (12x)2
⇒ AC2 = 25x2 + 144x2 = 169x2
So we get
AC2 = (13x)2
⇒ AC = 13x
In right angled ∆ABC
sin A = perpendicular/hypotenuse
So we get
sin A = BC/AC = 5x/13x = 5/13
In right angled ∆ABC
cos A = base/hypotenuse
So we get
⇒ cos A = AB/AC = 12x/13x = 12/13
Here
(sin A + cos A)/(2 cos A – sin A) = [(5/13) + (12/13)]/[(2× 12/13) – 5/13]
By further calculation
= [(5+12)/13]/[24/13 – 5/13]
So we get
= [(5+12)/13]/[(24 – 5)/13]
= (17/13)/(19/13)
= 17/13 × 13/19
= 17/19
Therefore, (sin A + cos A)/ (2 cos A – sin A) = 17/19
21. If tan θ = p/q, find the value of (p sin θ – q cos θ)/ (p sin θ + q cos θ).
Solution
It is given that
tan θ = p/q
Consider ∆ABC be right angled at B and ∠BCA = θ
tan θ = BC/AB = p/q
BC = px then AB = qx
In right angled ∆ABC
Using Pythagoras theorem
AC2 = BC2 + AB2
Substituting the values
AC2 = (px)2 + (qx)2
⇒ AC2 = p2x2 + q2x2
⇒ AC2 = x2 (p2 + q2)
So we get
AC = √x2 (p2 + q2)
⇒ AC = x(√p2 + q2)
In right angled ∆ABC
sin θ = perpendicular/hypotenuse
⇒ sin θ = BC/AC
Substituting the values
sin θ = px/x(√p2 + q2)
So we get
sin θ = p/(√p2 + q2)
In right angled ∆ABC
cos θ = base/hypotenuse
⇒ cos θ = AB/AC
Substituting the values
cos θ = qx/x(√p2 + q2)
So we get
cos θ = q/(√p2 + q2)
Here,
22. If 3 cot θ = 4, find the value of (5 sinθ – 3 cosθ)/(5 sinθ + 3 cosθ).
Solution
It is given that
3 cot θ = 4
⇒ cot θ = 4/3
Consider ∆ABC be right angled at B and ∠ACB = θ
cot θ = BC/AB = 4/3
Take BC = 4x then AB = 3x
In right angled ∆ABC
Using Pythagoras theorem
AC2 = AB2 + BC2
Substituting the values
AC2 = (3x)2 + (4x)2
⇒ AC2 = 9x2 + 16x2 = 25x2
So we get
AC2 = (5x)2
⇒ AC = 5x
In right angled ∆ABC
sin θ = perpendicular/hypotenuse
⇒ sin θ = AB/AC
Substituting the values
sin θ = 3x/5x = 3/5
In right angled ∆ABC
cos θ = base/hypotenuse
⇒ cos θ = BC/AC
Substituting the values
cos θ = 4x/5x = 4/5
23. (i) If 5 cosθ – 12 sinθ = 0, find the value of (sin θ + cos θ)/(2 cosθ – sinθ).
(ii) If cosecθ = 13/12, find the value of (2 sinθ – 3 cosθ)/(4 sinθ – 9 cosθ).
Solution
(i) It is given that
5 cosθ – 12 sinθ = 0
We can write it as
5 cosθ = 12 sinθ
⇒ sin θ/cos θ = 5/12
⇒ tan θ = 5/12
Dividing both numerator and denominator by cos θ
(ii) It is given that
cosec θ = 13/12
We know that cosec θ = 1/sin θ
1/sin θ = 13/12
⇒ sin θ = 12/13
Here cos2 θ = 1 – sin2 θ
Substituting the values
= 1 – (12/13)2
By further calculation
= 1 – 144/169
Taking LCM
= (169 – 144)/ 169
= 25/169
So we get
= (5/13)2
cos θ = 5/13
Here
24. If 5 sin θ = 3, find the value of (secθ – tanθ)/(secθ + tanθ).
Solution
Consider ∆ABC be right angled at B and ∠ACB = θ
It is given that
5 sin θ = 3
sin θ = AB/AC = 3/5
Take AB = 3x then AC = 5x
In right angled ∆ABC
Using Pythagoras theorem
AC2 = AB2 + BC2
⇒ BC2 = AC2 – AB2
Substituting the values
BC2 = (5x)2 – (3x)2
So we get
BC2 = 25x2 – 9x2 = 16x2
⇒ BC2 = (4x)2
⇒ BC = 4x
In right angled ∆ABC
sec θ = hypotenuse/base
⇒ sec θ = AC/BC = 5x/4x = 5/4
In right angled ∆ABC
tan θ = perpendicular/base
⇒ tan θ = AB/BC = 3x/4x = ¾
25. If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1.
Solution
Consider ∆ABC be right angled at B and ∠ACB = θ
It is given that
sin θ = cos θ
⇒ sin θ/cos θ = 1
tan θ = AB/BC = 1
Take AB = x then BC = x
In right angled ∆ABC,
Using Pythagoras theorem
AC2 = AB2 + BC2
⇒ AC2 = x2 + x2 = 2x2
So we get
AC = √2x2
⇒ AC = (√2)x
In right angled ∆ABC
sin θ = perpendicular/hypotenuse
sin θ = AB/AC = x/√2x = 1/√2
Here
2 tan2 θ + sin2 θ – 1 = 2×(1)2 + (1/√2)2 – 1
By further calculation
= (2×1) + ½ – 1
= 2 + ½ – 1
= 1+ ½
Taking LCM
= (2 + 1)/2
= 3/2
Therefore, 2 tan2 θ + sin2 θ – 1 = 3/2.
26. Prove the following:
(i) cos θ tan θ = sin θ
(ii) sin θ cot θ = cos θ
(iii) sin2 θ/ cos θ + cos θ = 1/ cos θ.
Solution
(i) cos θ tan θ = sin θ
LHS = cos θ tan θ
We know that tan θ = sin θ/cos θ
= cos θ (sin θ/cos θ)
So we get
= 1× sin θ/1
= sin θ
= RHS
Therefore, LHS = RHS.
(ii) sin θ cot θ = cos θ
LHS = sin θ cot θ
We know that cot θ = cos θ/sin θ
= sin θ (cos θ/sin θ)
= 1× cos θ/1
= cos θ
= RHS
Therefore, LHS = RHS.
(iii) sin2θ/cosθ + cosθ = 1/cosθ
LHS = sin2θ/cosθ + cosθ/1
Taking LCM
= (sin2θ + cos2θ)/cosθ
We know that,
sin2θ + cos2θ = 1
= 1/cos θ
= RHS
Therefore, LHS = RHS.
27. If in ∆ABC, ∠C = 90° and tan A = ¾, prove that sin A cos B + cos A sin B = 1.
Solution
It is given that
tan A = BC/AC = ¾
Using Pythagoras theorem
AB2 = AC2 + BC2
Substituting the values
= 42 + 32
= 16 + 9
= 25
= 52
So we get AB = 5
Here
sin A = BC/AC = 3/5
cos A = AC/AB = 4/5
cos B = BC/AB = 3/5
sin B = AC/AB = 4/5
LHS = sin A cos B + cos A sin B
Substituting the values
= (3/5 × 3/5) + (4/5 × 4/5)
By further calculation
= 9/25 + 16/25
= (9 + 16)/ 25
= 25/25
= 1
= RHS
Therefore, LHS = RHS.
28. (a) In figure (1) given below, ∆ABC is right-angled at B and ∆BRS is right-angled at R. If AB = 18 cm, BC = 7.5 cm, RS = 5 cm, ∠BSR = x° and ∠SAB = y°, then find:
(i) tan x°
(ii) sin y°.
(b) In the figure (2) given below, ∆ABC is right angled at B and BD is perpendicular to AC. Find
(i) cos ∠CBD
(ii) cot ∠ABD.
Solution
(a) ∆ABC is right-angled at B, ∆BSC is right-angled at S and ∆BRS is right-angled at R
It is given that
AB = 18 cm, BC = 7.5 cm, RS = 5 cm, ∠BSR = x° and ∠SAB = y°
By Geometry ∆ARS and ∆ABC are similar
AR/AB = RS/BC
Substituting the values
AR/18 = 5/7.5
By further calculation
AR = (5×18)/7.5 = (1×18)/1.5
Multiply both numerator and denominator by 10
AR = (18×10)/15
⇒ AR = (10×6)/5
⇒ AR = (2×6)/1 = 12
So we get
RB = AB – AR
⇒ RB = 18 – 12 = 6
In right angled ∆ABC
Using Pythagoras theorem
AC2 = AB2 + BC2
Substituting the values
AC2 = 182 + 7.52
By further calculation
AC2 = 324 + 56.25 = 380.25
⇒ AC = √380.25 = 19.5 cm
(i) In right angled ∆BSR
tan x° = perpendicular/base
tan x° = RB/RS = 6/5
(ii) In right angled ∆ASR
sin y° = perpendicular/hypotenuse
Using Pythagoras theorem
AS2 = 122 + 52
By further calculation
AS2 = 144 + 25 = 169
⇒ AS = √169 = 13 cm
So we get
sin y° = RS/AS = 5/13
(b) We know that
∆ABC is right angled at B and BD is perpendicular to AC
In right angled ∆ABC
Using Pythagoras theorem
AC2 = AB2 + BC2
Substituting the values
AC2 = 122 + 52
By further calculation
AC2 = 144 + 25 = 169
So we get
AC2 = (13)2
⇒ AC = 13
By Geometry ∠CBD = ∠A and ∠ABD = ∠C
(i) cos ∠CBD = cos ∠A = base/hypotenuse
In right angled ∆ABC
cos ∠CBD = cos ∠A = AB/AC = 12/13
(ii) cos ∠ABD = cos ∠C = base/perpendicular
In right angled ∆ABC
cos ∠ABD = cos ∠C = BC/AB = 5/12
29. In the adjoining figure, ABCD is a rectangle. Its diagonal AC = 15 cm and ∠ACD = α. If cot α = 3/2, find the perimeter and the area of the rectangle.
Solution
In right ∆ADC
cot α = CD/AD = 3/2
Take CD = 3x then AD = 2x
Using Pythagoras theorem
AC2 = CD2 + AD2
Substituting the values
(15)2 = (3x)2 + (2x)2
By further calculation
13x2 = 225
⇒ x2 = 225/13
So we get
x = √225/13 = 15/√13
Length of rectangle (l) = 3x = (3 × 15)/ √13 = 45/√13 cm
Breadth of rectangle (b) = 2x = (2×15)/√13 = 30/√13 cm
(i) Perimeter of rectangle = 2 (l + b)
Substituting the values of l and b
= 2 (45/√13 + 30/√13)
So we get
= 2 × 75/√13
= 150/√13 cm
(ii) Area of rectangle = l × b
Substituting the values of l and b
= 45/√13 × 30/√13
So we get
= 1350/13
= 103 (11/13) cm2
30. Using the measurements given in the figure alongside,
(a) Find the values of:
(i) sin Ï•
(ii) tan θ.
(b) Write an expression for AD in terms of θ.
Solution
From the figure
BC = 12, BD = 13
In right angled ∆BCD
Using Pythagoras theorem
BD2 = BC2 + CD2
It can be written as
CD2 = BD2 – BC2
Substituting the values
CD2 = (13)2 – (12)2
⇒ CD2 = 169 – 144 = 25
So we get
CD = √25 = 5
Construct BE perpendicular to AB
CD = BE = 5 and EA = AE = 14 – 5 = 9
(a) (i) sin Ï• = perpendicular/hypotenuse
In right angled ∆BCD
sin Ï• = CD/BD = 5/13
(ii) tan θ = perpendicular/hypotenuse
In right angled ∆AED
tan θ = ED/AE = BC/AE = 12/9 = 4/3 (Since ED = BC)
(b) In right angled ∆AED
sin θ = perpendicular/hypotenuse
cos θ = base/perpendicular
We can write it as
sin θ = ED/AD or cos θ = AE/AD
AD = ED/sin θ or AD = AE/cos θ
Substituting the values
AD = 12/sin θ or AD = 9/cos θ
Therefore, AD = 12/ sin θ or AD = 9/cos θ.
31. Prove the following:
(i) (sin A + cos A)2 + (sin A – cos A)2 = 2
(ii) cot2 A – 1/sin2 A + 1 = 0
(iii) 1/(1 + tan2 A) + 1/(1 + cot2 A) = 1
Solution
(i) (sin A + cos A)2 + (sin A – cos A)2 = 2
LHS = (sin A + cos A)2 + (sin A – cos A)2
Using the formula
(a + b)2 = a2 + b2 + 2ab and (a – b)2 = a2 + b2 – 2ab
= [(sin A)2 + (cos A)2 + 2 sin A cos A] + [(sin A)2 + (cos A)2 – 2 sin A cos A]
By further calculation
= sin2 A + cos2 A + 2 sin A cos A + sin2 A + cos2 A – 2 sin A cos A
= sin2 A + cos2 A + sin2 A + cos2 A
= 2 sin2 A + 2 cos2 A
We know that sin2 A + cos2 A = 1
= 2 (sin2 A + cos2 A)
= 2 (1)
= 2
= RHS
Therefore, LHS = RHS.
(ii) cot2 A – 1/sin2 A + 1 = 0
LHS = cot2 A – 1/sin2 A + 1
We know that
1/sin A = cosec A
= cot2 A – cosec2 A + 1
= (1 + cot2 A) – cosec2 A
We know that 1 + cot2 A = cosec2 A
= cosec2 A – cosec2 A
= 0
= RHS
Therefore, LHS = RHS.
(iii) 1/(1 + tan2 A) + 1/(1 + cot2 A) = 1
LHS = 1/(1 + tan2 A) + 1/(1 + cot2 A)
We know that
sec2 A – tan2 A = 1
⇒ sec2 A = 1 + tan2 A
⇒ cosec2 A – cot2 A = 1
⇒ cosec2 A = 1 + cot2 A
So we get
= 1/sec2 A + 1/cosec2 A
Here,
1/sec A = cos A and 1/cosec A = sin A
= cos2 A + sin2 A
= 1
= RHS
Therefore, LHS = RHS.
32. Simplify
Solution
We know that 1 = sin2 θ + cos2 θ
= √cos2 θ/sin2 θ
= cos θ/ sin θ
Here cos θ/sin θ = cot θ
= cot θ
Therefore,
33. If sin θ + cosec θ = 2, find the value of sin2 θ + cosec2 θ.
Solution
It is given that
sin θ + cosec θ = 2
⇒ sin θ + 1/sin θ = 2
By further calculation
sin2 θ + 1 = 2 sin θ
⇒ sin2 θ – 2 sin θ + 1 = 0
So we get,
(sin θ – 1)2 = 0
⇒ sin θ – 1 = 0
⇒ sin θ = 1
Here,
sin2 θ + cosec2 θ = sin2 θ + 1/sin2 θ
Substituting the values
= 12 + 1/12
= 1 + 1/1
= 1 + 1
= 2
34. If x = a cos θ + b sin θ and y = a sin θ – b cos θ, prove that x2 + y2 = a2 + b2.
Solution
It is given that
x = a cos θ + b sin θ …(1)
y = a sin θ – b cos θ …(2)
By squaring and adding both the equations
x2 + y2 = (a cos θ + b sin θ)2 + (a sin θ – b cos θ)2
Using the formula
(a + b)2 = a2 + b2 + 2ab and (a – b)2 = a2 + b2 – 2ab
= [(a cosθ)2 + (b sinθ)2 + 2 (a cosθ) (b sinθ)] + [(a sinθ)2 + (b cosθ)2 – 2 (a sinθ) (b cosθ)]
By further calculation
= a2 cos2θ + b2 sin2θ + 2 ab sinθ cosθ + a2 sin2θ + b2 cos2θ – 2 ab sinθ cosθ
= a2 cos2θ + b2 sin2θ + a2 sin2θ + b2 cos2θ
So we get,
= a2 (cos2θ + sin2θ) + b2 (sin2θ + cos2θ)
Here sin2θ + cos2θ = 1
= a2 (1) + b2 (1)
= a2 + b2
Therefore, x2 + y2 = a2 + b2.
Chapter test
1. (a)From the figure (i) given below, calculate all the six t-ratios for both acute……
(b)From the figure (ii) given below, find the values of x and y in terms of t-ratios
Solution
(a) From right angled triangle ABC,
By Pythagoras theorem, we get
AC2 = AB2 + BC2
⇒ AB2 = AC2 – BC2
⇒ AB2 = (3)2 – (2)2
⇒ AB2 = 9 – 4
⇒ AB2 = 5
⇒ AB = √5
(i) sin A = perpendicular/ hypotenuse
= BC/AC
= 2/3
(ii) cos A = base/ hypotenuse
= AB/AC
= √5/3
(iii) tan A = perpendicular/ base
= BC/AB
= 2/ √5
(iv) cot A = base/perpendicular
= AB/ BC
= √5/2
(v) sec A = hypotenuse/ base
= AC/AB
= 3/ √5
(vi) cosec A = hypotenuse/perpendicular
= AC/BC
= 3/2
(b) From right angled triangle ABC,
∠BAC = θ
Then we know that,
cotθ = base/ perpendicular
= AB/ BC
= x/ 10
x = 10 cotθ
Also,
cosecθ = hypotenuse/ perpendicular
= AC/ BC
= y/ 10
y = 10 cosec θ
Therefore, x = 10 cot θ and y = 10 cosec θ.
2. (a) From the figure (1) given below, find the values of:
(i) sin ∠ABC
(ii) tan x – cos x + 3 sin x.
(b) From the figure (2) given below, find the values of:
(i) 5 sin x
(ii) 7 tan x
(iii) 5 cos x – 17 sin y – tan x.
Solution
(a) From the figure
BC = 12, CD = 9 and BC = 20
In right angled ∆ABC,
Using Pythagoras theorem
AB2 = AC2 + BC2
It can be written as
AC2 = AB2 – BC2
Substituting the values
AC2 = (20)2 – (12)2
By further calculation
AC2 = 400 – 144 = 256
So we get
AC2 = (16)2
⇒ AC = 16
In right angled ∆BCD
Using Pythagoras theorem
BD2 = BC2 + CD2
Substituting the values
BD2 = 122 + 92
By further calculation
BD2 = 144 + 81 = 225
So we get
BD2 = (15)2
⇒ BD = 15
(i) In right angled ∆BCD
sin ∠ABC = perpendicular/hypotenuse
So we get
sin ∠ABC = AC/AB = 16/20 = 4/5
(ii) In right angled ∆BCD
tan x = perpendicular/base
So we get
tan x = BC/CD = 12/9 = 4/3
In right angled ∆BCD
cos x = base/hypotenuse
So we get
cos x = CD/BD = 9/15 = 3/5
In right angled ∆BCD
sin x = perpendicular/hypotenuse
So we get
sin x = BC/BD = 12/15 = 4/5
⇒ tan x – cos x + 3 sin x = 4/3 – 3/5 + (3× 4/5)
By further calculation
= 4/3 – 3/5 + 12/5
Taking LCM
= [(4×5) – (3×3) + (12×3)]/15
So we get
= (20 – 9 + 36)/15
= (56 – 9)/15
= 27/15
= 3 (2/15)
Therefore, tan x – cos x + 3 sin x = 3 2/15.
(b) In the figure
AC = 17, AB = 25, AD = 15
In right angled ∆ACD
Using Pythagoras theorem
AC2 = AD2 + CD2
Substituting the values
(17)2 = (15)2 + (CD)2
By further calculation
CD2 = (17)2 – (15)2
⇒ CD2 = 289 – 225 = 64
So we get
CD2 = 82
⇒ CD = 8
In right angled ∆ABD
Using Pythagoras theorem
AB2 = AD2 + BD2
Substituting the values
(25)2 = (15)2 + BD2
By further calculation
BD2 = (25)2 – (15)2
⇒ BD2 = 625 – 225 = 400
So we get
BD2 = (20)2
⇒ BD = 20
(i) In right angled ∆ABD
5 sin x = 5 (perpendicular/hypotenuse)
So we get
= 5 (AD/AB)
= 5 × 15/25
= 15/5
= 3
(ii) In right angled ∆ABD
7 tan x = 7 (perpendicular/base)
So we get
= 7 (AD/AB)
= 7× 15/20
= 7× ¾
= 21/4
= 5 ¼
(iii) In right angled ∆ABD
cos x = base/hypotenuse
So we get
cos x = BD/AB = 20/25 = 4/5
In right angled ∆ACD
sin y = perpendicular/hypotenuse
So we get
sin y = CD/AC = 8/17
In right angled ∆ABD
tan x = perpendicular/base
So we get
tan x = AD/BD = 15/20 = ¾
5 cosx – 17 siny – tanx = (5× 4/5) – (17× 8/17) – ¾
It can be written as
= 4/1 – 8/1 – ¾
Taking LCM
= (16 – 32 – 3)/4
= (16 – 35)/4
So we get
= –19/4
= –4 ¾
Therefore, 5 cos x – 17 sin y – tan x = – 4 ¾.
3. If q cosθ = p, find tanθ – cotθ in terms of p and q.
Solution
Consider ABC as a triangle right angled at B and ∠ACB = θ
It is given that
q cos θ = p
cos θ = BC/AC = p/q
Take BC = px then AC = qx
In right angled ∆ABC
Using Pythagoras theorem
AC2 = AB2 + BC2
It can be written as
AB2 = AC2 – BC2
Substituting the values
AB2 = (qx)2 – (px)2
⇒ AB2 = q2x2 – p2x2
Taking out the common terms
AB2 = (q2 – p2)x2
So we get
AB = √(q2 – p2) x2
⇒ AB = (√q2 – p2)x
In right angled ∆ABC
tan θ = perpendicular/base
So we get
tan θ = AB/BC = [(√q2 – p2)x]/px
⇒ tan θ = (√q2 – p2)/p
In right angled ∆ABC
cot θ = base/perpendicular
So we get
cot θ = BC/AB = px/[(√q2 – p2)x]
⇒ cot [(√q2 – p2)x] = p/(√q2 – p2)
4. Given 4 sin θ = 3 cos θ, find the values of:
(i) sin θ
(ii) cos θ
(iii) cot2 θ – cosec2 θ.
Solution
It is given that
4 sin θ = 3 cos θ
⇒ sin θ/cos θ = ¾
⇒ tan θ = ¾
Consider ∆ABC right angled at B and ∠ACB = θ
tan θ = perpendicular/base
Substituting the values
¾ = AB/BC
⇒ AB/BC = ¾
Take AB = 3x then BC = 4x
In right angled ∆ABC
Using Pythagoras theorem
AC2 = AB2 + BC2
Substituting the values
AC2 = (3x)2 + (4x)2
By further calculation
AC2 = 9x2 + 16x2 = 25x2
So we get
AC2 = (5x)2
⇒ AC = 5x
(i) In right angled ∆ABC
sin θ = perpendicular/hypotenuse
So we get
sin θ = AB/AC = 3x/5x = 3/5
(ii) In right angled ∆ABC
cos θ = base/hypotenuse
So we get
cos θ = BC/AC = 4x/5x = 4/5
(iii) In right angled ∆ABC
cot θ = base/perpendicular
So we get
cot θ = BC/AB = 4x/3x = 4/3
In right angled ∆ABC
cosec θ = hypotenuse/perpendicular
So we get
cosec θ = AC/AB = 5x/3x = 5/3
Here
cot2 θ – cosec2 θ = (4/3)2 – (5/3)2
By further calculation
= 16/9 – 25/9
= (16 – 25)/9
= -9/9
= -1
Therefore, cot2 θ – cosec2 θ = -1.
5. If 2 cos θ = √3, prove that 3 sin θ – 4 sin3 θ = 1.
Solution
It is given that
2 cos θ = √3
⇒ cos θ = √3/2
We know that
sin2 θ = 1 – cos2 θ
Substituting the values
= 1 – (√3/2)2
= 1 – ¾
= ¼
sin θ = √ ¼ = ½
Consider
LHS = 3 sin θ – 4 sin3 θ
It can be written as
= sinθ (3 – 4sin2 θ)
Substituting the values
= ½ [3 – (4 × ¼)]
= ½ (3 – 1)
= ½ × 2
= 1
= RHS
Therefore, proved.
6. If (sec θ – tan θ)/ (sec θ + tan θ) = ¼, find sin θ.
Solution:
We know that
By cross multiplication
4 – 4 sin θ = 1 + sin θ
We get
4 – 1 = sin θ + 4 sin θ
⇒ 3 = 5 sin θ
⇒ sin θ = 3/5
7. If sin θ + cosec θ = 3 1/3, find the value of sin2 θ + cosec2 θ.
Solution
It is given that
sin θ + cosec θ = 3 1/3 = 10/3
By squaring on both sides
(sin θ + cosec θ)2 = (10/3)2
Expanding using formula (a + b)2 = a2 + b2 + 2ab
sin2 θ + cosec2 θ + 2 sin θ cosec θ = 100/9
We know that sin θ = 1/cosec θ
sin2 θ + cosec2 θ + (2 sinÎ¸× 1/sin θ) = 100/9
By further calculation
sin2 θ + cosec2 θ + 2 = 100/9
⇒ sin2 θ + cosec2 θ = 100/9 – 2
Taking LCM
sin2 θ + cosec2 θ = (100 – 18)/9 = 82/9
So we get
sin2 θ + cosec2 θ = 9 1/9
8. In the adjoining figure, AB = 4 m and ED = 3 m.
If sin α = 3/5 and cos β = 12/13, find the length of BD.
Solution
It is given that
sin α = AB/AC = 3/5
AB = 3 and AC = 5
Using Pythagoras theorem
AC2 = AB2 + BC2
Substituting the values
52 = 32 + BC2
By further calculation
25 = 9 + BC2
⇒ BC2 = 25 – 9 = 16
So we get
BC2 = 42
⇒ BC = 4
We know that
tan α = AB/BC = 4/5
cos β = CD/CE = 12/13
CD = 12 and CE = 13
Using Pythagoras theorem
CE2 = CD2 + ED2
Substituting the values
132 = 122 + ED2
By further calculation
ED2 = 132 – 122
⇒ ED2 = 169 – 144 = 25
So we get
ED2 = (5)2
⇒ ED = 5
⇒ tan β = ED/CD = 5/12
From the figure
tan α = AB/BC = 4/BC
So we get
¾ = 4/BC
⇒ BC = (4×4)/3 = 16/3 m
tan β = ED/CD = 3/CD
⇒ 5/12 = 3/CD
So we get
CD = (12 × 3)/5 = 36/5 m
Here,
BD = BC + CD
Substituting the values
= 16/3 + 36/5
Taking LCM
= (80 + 108)/15
= 188/15 m
= 12 8/15 m